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We demonstrate how gradient ascent pulse engineering optimal control methods can be implemented on
donor-electron-spin qubits in Si semiconductors with an architecture complementary to the original Kane’s
proposal. We focus on the high-fidelity-controlled-NOT �CNOT� gate and explicitly find its digitized control
sequences by optimizing its fidelity over the external controls of the hyperfine A and exchange J interactions.
This high-fidelity-CNOT gate has an error of about 10−6, below the error threshold required for fault-tolerant
quantum computation, and its operation time of 100 ns is about three times faster than 297 ns of the
proposed global control scheme. It also relaxes significantly the stringent distance constraint of two
neighboring donor atoms of 10–20 nm as reported in the original Kane’s proposal to about 30 nm in which
surface A and J gates may be built with current fabrication technology. The effects of the control voltage
fluctuations, the dipole-dipole interaction, and the electron-spin decoherence on the CNOT gate fidelity are also
discussed.
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One of the important criteria for physical implementation
of a practical quantum computer is to have a universal set of
quantum gates with operation times much faster than the
relevant decoherence time of the quantum computer. In ad-
dition, high-fidelity quantum gates to meet the error thresh-
old of about 10−4 �recently shown to be about 10−3 in �1�� are
also desired for the fault-tolerant quantum computation
�FTQC�. There have been several different approaches in the
optimal control of quantum gate operation problems �2–4�.
This work focuses on finding the control parameter sequence
in a near time-optimal way using the gradient ascent pulse
engineering �GRAPE� �2� approach for a high-fidelity-
controlled NOT �CNOT� gate in Si:P-based donor spin quan-
tum computer architectures �5–8� where the electron spin is
defined as qubit �9�. The GRAPE �2� approach partitions a
given time into several equal-time steps and, in each time
step of the sequence, the amplitudes of control parameters
are set to be constant. For a desired operation, we can define
the trace fidelity between the desired operation and the
unitary operation from the sequence. Since we can
calculate the derivative of fidelity with respect to the control
amplitudes �gradient ascent� in each step, we will be able to
obtain given the required fidelity the near time-optimal con-
trol sequence numerically. Recently, the GRAPE algorithm
has been applied to the coupled Josephson qubit quantum
computing �4�, and the numerically optimal control time for
a CNOT gate is found to be 55 ps �4� instead of 255 ps in
Ref. �10�.

The architecture of Si-based donor spin quantum com-
puter �5–8� is composed of 31P atoms doped in a purified
28Si host, where each phosphorus has an electron spin and a
nuclear spin. In a constant magnetic field B0 applied in the ẑ
direction, the single-qubit Hamiltonian can be written as
H=ge�BB0�z

e /2−gn�nB0�z
n /2+A�e ·�n, where the

effective electron g actor in Si ge=2, the g factor for a 31P

nuclear spin gn=2.26, and the hyperfine interaction
A�1.21�10−7 eV. According to numerical calculations
�11�, it may be possible to vary the hyperfine interaction with
A-gate voltage by up to �50% before the donor electron is
ionized. Similar to the globally controlled electron-spin
quantum computing scheme �9�, we apply a microwave
�MW� magnetic field Bac to allow for x-axis rotations and
also always keep the Bac field on as it may not be easy to
control and turn on/off the Bac field quickly at the precise
times in experiments. If we initialize the nuclear spins
to the spin-up state �12�, we can use the energy states
of �↑e↑n� and �↓e↑n� as a qubit �9�. Following Ref. �9�,
by defining ��A�=�E�A� /�, where �E�A�=ge�BB0+2A
+ �2A2 / �ge�BB0 /2+gn�nB0 /2��, we obtain the reduced
Hamiltonian in the frame rotating with the MW field

H̃ = ����z/2 + ge�BBac�x/2, �1�

where ��=��A�−�ac, and �ac is the angular frequency of
the MW field Bac. We tune �ac to be the electron-spin-
resonance frequency obtained when no voltage is applied to
the corresponding A gate, i.e., �ac=��A0�. Then the qubits
will effectively rotate around the x axis when ��=0 �or
equivalently A=A0� and around an axis which is slightly
tilted when ���0 �or A�A0� described by Eq. �1�.

The effective reduced two-qubit Hamiltonian approxi-
mated from assuming that the nuclear spins are frozen out to
be always up in the rotating frame is then

H̃ = ���1�z
1/2 + ���2�z

2/2 + ge�BBac��x
1 + �x

2�/2

+ J�1e · �2e, �2�

where J is the exchange interaction between two adjacent
donor-electron spins. We will use the reduced Hamiltonian to
obtain control sequences by optimizing the fidelity of CNOT

gate operations using the GRAPE approach. Simulations on
the full two-qubit Hamiltonian,*goan@phys.ntu.edu.tw
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H = ge�BB0��z
1e + �z

2e�/2 − gn�nB0��z
1n + �z

2n�/2

+ ge�BBac cos �act��x
1e + �x

2e�/2 + A1�1e · �1n

+ ge�BBac sin �act��y
1e + �y

2e�/2 + A2�2e · �2n

− gn�nBac cos �act��x
1n + �x

2n�/2 + J�1e · �2e

− gn�nBac sin �act��y
1n + �y

2n�/2, �3�

with the control sequences found will also be performed for
error comparison.

Since the Bac field is always on in this scheme, electrons
will undergo a rotation around the x axis when there are no
voltages applied on A gates, i.e., ��=0, with an angular
frequency of �0=ge�BBac /�. While the target electrons per-
form a particular unitary operation within time t, every spec-
tator qubit will rotate around the x axis with an angle of
�x=�0t. If �x does not equal to 2n	 where n is integral,
another correction step will be required for the spectator qu-
bits. Thus, it will be convenient to choose the operation time
t=2n	 /�0=2n�	 / �ge�BBac�, such that there is no need for
correction for spectator qubits. The Bac field is usually very
small compared with the B0 field. For a given time t, we
choose n=1 in the reduced and full-Hamiltonian simulations.
In this case, when the control duration is 100 ns and n=1, the
strength of Bac is 3.56�10−4 T.

We first try different piecewise constant control steps and
numerically calculate in the GRAPE approach the fidelity
�error� against the time needed to implement a CNOT gate
with stopping criteria of error in the optimizer set to 10−9 in
order to economize the simulation time. Here, the error is
defined as, where Ftr is the trace fidelity defined as
Ftr= �Tr�UD

† UF	�2 with UD being the desired unitary operator
in a given time t, and UF being the optimal unitary operator
constructed by our control sequence. For each trying value of
time t, we divide the sequence into 30 piecewise steps, start-
ing with each of the initial control amplitudes �A1, A2, and J
gates or equivalently ��1, ��2, and J� by assigning a ran-
dom value to every five steps in time and using a cubic
spline to fill in the amplitudes of the intermediate time steps.
The values of the control amplitudes A1 and A2 are varied
between A0 /2 and A0 �9,11�, and the value of J is varied
between 0 and J0, where J0 is chosen for the donor separa-
tion to be around 30 nm. The fidelity against time obtained
from the optimization of the reduced Hamiltonian �2� is
shown in Fig. 1. In Fig. 1�b�, the error is less than 10−8 for
times longer than 100 ns, and it is found that 30 piecewise
constant control steps for the CNOT gate operation will be
sufficient to meet the required fidelity �error� and the perfor-
mance would not be improved further with more steps. With
the operation time t=100 ns and stopping criteria of error set
to 10−16, we can find that the near time-optimal high-fidelity-
CNOT gate control sequence has an error of 1.11�10−16. The
digitized sequence of controls is shown in Fig. 2. In a typical
Kane quantum computer’s scheme, the typical value of
J /h�10.2 GHz, which requires the separation between two
neighboring donors to be about 10–20 nm �5�. This sets a
stringent fabrication condition to fabricate surface A and J
gates within such a short distance. One of the great advan-
tages in our scheme is that the maximum exchange energy in

our simulation is only J /h�20 MHz. This corresponds to a
donor separation around 30 nm �5,13�. To fabricate gates of
this size is within the reach of the current fabrication tech-
nology.

We next apply the control sequence of the CNOT gate ob-
tained from the optimization of the reduced Hamiltonian �2�
to the full spin Hamiltonian �3�. We simulate the CNOT gate
numerically with initial four different computational basis
electron-spin states �00�e, �01�e, �10�e, and �11�e, but the same
nuclear-spin-up state, where �0�e means the electron spin is
up. The final reduced electron-density matrix is defined as
the composite density matrix traced over all the nuclear-spin
states. The errors of the full-Hamiltonian CNOT gate opera-

FIG. 1. �Color online� Fidelity versus time for the CNOT gate. �a�
gives the trace fidelity against time, while �b� shows deviation
log10�1−Ftr� from fidelity.

FIG. 2. �Color online� Near time-optimal CNOT gate control se-
quence with 30 steps in 100 ns obtained using the reduced
Hamiltonian. In �a� and �b�, the maximum energy difference
of �z term from detuning the hyperfine interaction is
�1 /2��� /2	=−14.7 MHz. In �c�, the maximum electron-electron
exchange energy is J /h=19.96 MHz.
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tions with the four input electron-spin basis states evolving
to their correspondingly expected output electron-spin states
are shown in Table I. Here the error is defined as 1− P, where
P is the probability that the qubits are in our desired quantum
state after the CNOT operation. The time evolutions of the
states of the CNOT gate are shown in Fig. 3. The error is
about 10−6 which are below the error threshold 10−4 �10−3 in
�1�� required for the FTQC. Most of the errors result from the
accuracy of the second-order approximation in A of Eq. �2�
since the hyperfine interaction A would cause both electron
spins and the nuclear spins to flip in the full Hamiltonian �3�.
The CNOT gate operation time of 100 ns is about three times
faster than the globally controlled electron-spin scheme �9�
of 297 ns �in �9�, the indicated CNOT time is 148 ns that is
due to a factor of 2 missing in the denominator of the �z term
of their Hamiltonian �6��. The error probabilities that nuclear
spins may flip after the CNOT gate operation for the four
input electron states are around 10−6 �see Table I�. If we
repeat the CNOT process N times by simply inputting the
same pure electron state �ij� but not reinitializing the nuclear
state each time, the errors of the CNOT gate operations will
accumulate. The numerical results indicate that in the worst

case of the electron-spin input state �10�e, after around 60
�250� times of operations, the error sums up to 1.03
�10−4�0.79�10−3�. Therefore, in order to maintain the
FTQC, one has to reinitialize the nuclear-spin state before
about 60 �250� times of operations.

Although the exchange interaction dies off exponentially
with distance, the dipole-dipole interaction that couples ev-
ery pair of electronic spins in the system only dies off as
1 /d3, where d is the distance between two qubits. The
dipole-dipole interaction Hamiltonian can be written as

HD = D��1e · �2e − 3��1e · n̂���2e · n̂�� , �4�

where D=
�0
e

2�2

16	d3 is the dipolar interaction energy, 
e=
gee

2me
is

the gyromagnetic ratio of the electrons, and n̂ is the unit
vector in the direction joining the two electrons. In our
scheme, the separation of the two donor qubits is around 30
nm, and thus the corresponding D�1.98�10−12 eV, which
is still 5 orders of magnitude smaller than the exchange en-
ergy J used in our scheme. We simulate the optimal control
sequences obtained previously with the full Hamiltonian plus
the dipole-dipole interaction Hamiltonian to see its
effect. Since the first term in Eq. �4� has the same form
as the exchange energy, we may combine this term with the
exchange energy. So what we really need to care about is
only the second term in Eq. �4�, which becomes
HD� =−3D�y

1e
� �y

2e with the donors aligning along the n̂= ŷ
axis. The fidelities of the simulation results are slightly worse
than the case without the dipole-dipole interaction, but they
are almost the same and the errors are still below the error
threshold 10−4 �10−3 in �1�� required for the FTQC. So the
dipole-dipole interaction may dominate for larger separa-
tions, but it is still too small to decrease significantly the
fidelity of the CNOT gate operation.

Since we apply voltages on the A and J gates to control
the strengths of hyperfine interaction and exchange interac-
tion, there might be noise induced from the �thermal� fluc-
tuations in the control circuits, which then cause the
uncertainties of the control parameters and decrease the
fidelity of a specific operation. To analyze the decrease in
fidelity due to these uncertainties, we model the noise
on the control parameters A1, A2, and J as independent
white noise with Hamiltonian written as HN
=�A�1�t��1e ·�1n+�A�2�t��2e ·�2n+�J�3�t��1e ·�2e, where
the mean of the continuous time random processes

�i�t��=0, the correlation functions 
�i�t�� j�t���=
ij
�t− t��,
and �A

2 and �J
2 are the spectral densities of the noise signals,

which have the dimension of �energy�2 /Hz. We simulate the
optimal control sequence in the presence of the white noise
through the effective master-equation approach �14�. The
contour plot of the logarithmic errors of the full-Hamiltonian
simulation results due to the white noise is shown in Fig. 4.
To satisfy the error threshold 10−4 �10−3 in �1�� of the FTQC,
the spectral densities �J

2 /h2 and �A
2 /h2 have to be smaller

than 6.2 and 13 Hz �63 and 125 Hz�, respectively. This pre-
cision of control should be achievable with modern elec-
tronic voltage controller devices. For example, it was stated
in �5� that the spectral density of the gate voltage fluctuations
for good room-temperature electronics is on the order of

TABLE I. Summary of the CNOT gate errors.

Input state,
�kj�e � �00�n

Expected
output state,
�ij�e � �00�n

Error
�1− P� a

Probability that
nuclear-spins

flipb

�00�e � �00�n �00�e � �00�n 1.80�10−8 1.57�10−7

�01�e � �00�n �01�e � �00�n 1.80�10−7 2.00�10−7

�10�e � �00�n �11�e � �00�n 1.92�10−6 1.93�10−6

�11�e � �00�n �10�e � �00�n 1.20�10−6 1.56�10−6

aThe output reduced density matrix of the electron spins is obtained
by tracing over all the nuclear states.
bHere, we trace the total output density matrix over the electron-
spin states to obtain the reduced density matrix for the nuclear-spin
states to compute the flipping probability.

FIG. 3. �Color online� Time evolution of the CNOT gate in the
rotating frame simulated using the full Hamiltonian with four dif-
ferent initial electron-spin input states. All the nuclear spins are
initially spin up.
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10−18 V2 /Hz, comparable to the room-temperature Johnson
noise of a 50 � resistor. At a particular bias voltage, the
gates have a frequency tuning parameter �=df /dV estimated
to be 10–100 MHz/V �5�. Therefore, the spectral density of
energy fluctuations of the control parameters for good room-
temperature devices can be estimated to be 10−4–10−2 Hz
that is still much smaller than 6 Hz required by the error
threshold of 10−4.

The decoherence time T2
e for P donor-electron spin in pu-

rified Si has been indicated experimentally �15� to be poten-
tially considerably longer than 60 ms at 4 K. It has been
shown �8� that the two-qubit gate fidelity of Kane’s quantum
computer is limited primarily by the electron decoherence
time, e.g., a typical error of CNOT is 8.3�10−5 with an op-
eration time of 16 �s for a simple dephasing model of T2

e

=60 ms. In our scheme, the CNOT gate time is much faster

and we expect the decoherence effect may decrease the fi-
delity less. The error with decoherence can be estimated to
be 1−Fre

−t/T2, where Fr and t are the trace fidelity and op-
eration time of the gate, respectively. For this simple esti-
mate, the error is about 2.7�10−6, below the error threshold
of 10−4 �10−3 in �1��.

In summary, we have applied the GRAPE approach to
find the near time-optimal high-fidelity-CNOT gate control
sequence. A great advantage of the CNOT gate sequence is
that the maximum value of the exchange interaction is
J /h�20 MHz, which is about 500 times smaller than the
typical value of 10.2 GHz in �5,7–9�, and yet the CNOT gate
operation time is still about three times faster than in �9�.
This small exchange interaction relaxes significantly the
stringent distance constraint of two neighboring donor atoms
of about 10–20 nm as reported in the original Kane’s pro-
posal �5� to about 30 nm. To fabricate surface gates within
such a distance is within the reach of the current fabrication
technology. Unlike the traditional decomposition method that
decomposes general gate operations into several single-qubit
and some interaction �two-qubit� operations in series as the
CNOT gate in �9�, the GRAPE optimal control approach
is—in a sense—more like parallel computing as single-qubit
�A1 and A2 both on� and two-qubit �J on� operations can be
performed simultaneously on the same qubits in parallel �see
Fig. 2�. As a result, the more complex gate operation it is
applied, the more time one may save, especially for those
multiple-qubit gates that may not be simply decomposed by
using the traditional method. So the GRAPE approach may
prove useful in implementing quantum gate operations in
real quantum computing experiments in the future.
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FIG. 4. �Color online� Contour plot of logarithmic errors simu-
lated under different spectral densities �A

2 and �J
2 of the white-noise

signals on the control amplitudes of A and J of the full Hamiltonian.
The unit of �A

2 /h2 and �J
2 /h2 in the plot is Hz and both of the axes

are also in logarithmic scales.
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