
Quantum Zeno and anti-Zeno effect of a nanomechanical resonator measured by a point contact

Po-Wen Chen,1,* Dong-Bang Tsai,2 and Philip Bennett3
1Department of Physics, National Taiwan University, Taipei 10617, Taiwan

2Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
3Department of Education Portfolio, Meadowbank College, Sydney, Australia

�Received 25 December 2008; revised manuscript received 18 January 2010; published 8 March 2010; corrected 2 April 2010�

The occurrence of either the quantum Zeno effect �QZE� or anti-Zeno effect �AZE� resulting from the
short-time behavior of the environment-induced decoherence for quantum Brownian motion �QBM� model has
been discussed �S. Maniscalco, J. Piilo, and K. A. Suominen, Phys. Rev. Lett. 97, 130402 �2006��. We discuss
here while the shuttering time period �length� of the frequent observations is changed, the system of interest,
i.e., a nanomechanical oscillator, will undergo a QZE to AZE crossover. Instead of interacting with an equi-
librium bosonic bath in a QBM model, we investigate the occurrence of either QZE or AZE of a nanome-
chanical oscillator coupled to a nonequilibrium fermionic reservoir �quantum point contact �QPC� detector as
a measuring device�. We find that Zeno and anti-Zeno behaviors depend on the values of the system and
reservoir parameters such as the oscillator frequency, energy cutoff, bias voltage, and reservoir temperature.
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I. INTRODUCTION

The rapid development of nanotechnology in recent years
has ushered in a new generation of quantum electronic de-
vices incorporating the mechanical degrees of freedom, so-
called nanoelectromechanical systems.1–5 Recently, mechani-
cal resonators with vibrational eigenfrequencies on the order
of 1 GHz have been fabricated.6,7 The standard cantilever
displacement measurement schemes are based on laser inter-
ferometry, and can reach the levels of sensitively on the or-
der of 10−4 Å /�Hz, opening new avenues of technology in
high-precision quantum measurement. Quantum oscillations
of nanomechanical resonators can provide an attractive plat-
form for testing quantum phenomena at macroscopic scales.
It has also been suggested8 that gigahertz-frequency nanome-
chanical resonators can be used to coherently couple two or
more Josephson junction qubit together to make a flexible
and scalable solid-state quantum-information-processing ar-
chitecture. This is why the problem of the decoherence and
relaxation of a nanomechanical oscillator �continuous sys-
tem�, interacting with an environment or a measurement de-
vice, has become a very important issue in quantum comput-
ing and information.9–11 In general, the influences of a
surrounding environment or a detector on the nanomechani-
cal oscillator system is of important for the sake of under-
standing oscillator measurements when the detector �envi-
ronment� is acting on the oscillator in different decay
regimes.9,12 The key quantity in these discussions is the re-
duced density matrix ��t� of the nanomechanical oscillator
defined as the partial trace of the total system-plus-reservoir
density operator �T�t� over the reservoir degrees of freedom;
i.e., ��t�=TrR��T�t��. We investigate here in this paper, the
occurrence of either quantum Zeno effect �QZE� or anti-
Zeno effect of a nanomechanical oscillator coupled to a non-
equilibrium fermionic reservoir �quantum point-contact de-
tector� acting as a measuring device.

The quantum Zeno effect predicts that the decay of an
unstable system can be slowed down by measuring the sys-
tem frequently enough. On the other hand, the enhancement

of the decay due to frequent measurements may be called an
anti-Zeno effect or inverse Zeno effect �AZE�.13–15 Recently,
Maniscalco15 et al. had investigated the Zeno-anti-Zeno
crossover in quantum Brownian motion �QBM� model deal-
ing with a system of damped harmonic oscillator interacting
with a bosonic reservoir in thermal equilibrium. They dem-
onstrate the short-time behavior of environment-induced de-
coherence due to the interaction between the system and its
surroundings. The goal of that paper was to investigate the
conditions for the occurrence of the quantum Zeno and anti-
Zeno processes using the QBM model, for a damped har-
monic oscillator under decoherence induced by a controlled
environment. The use of artificially controllable engineered
environments has already been demonstrated for single
trapped ions.16,17 The possibility of controlling both the en-
vironment and the system-environment couplings would al-
low one to monitor the transition from Zeno to anti-Zeno
dynamics. In Ref. 18, it was proposed to use a single trapped
ion coupled to engineered reservoirs in order to simulate
quantum Brownian motion by applying noisy electric fields.
Shuttering these noisy electric fields, one can model a fast
switch off-on of the environment which implies that when
the noise is off, the reservoir simply does not exist anymore.
The action of the sudden switch off-on of the environment
may be seen as a physical implementation of the operation of
trace over the reservoir degrees of freedom. The operation of
trace is a typical example of a nonselective measurement.9

Hence, a succession of short switch off-on periods, realized
by shuttering the engineered applied noise, would induce
Zeno or anti-Zeno dynamics depending on the value of the
system and reservoir parameters and of the shuttering period.
This was the core idea for monitoring the Zeno-anti-Zeno
crossover with trapped ions.

Quantum point contact �QPC� as a measurement device
for nanomechanical oscillator is studied in the past although
to the best of our knowledge there is no discussion on the
Zeno-anti-Zeno condition in this literature for this system. In
analogy with the study of Ref. 18, here in our case, one can
do a fast switch off-on of the environment by controlling the
shuttering time of the noisy electric field. When the noise is

PHYSICAL REVIEW B 81, 115307 �2010�

1098-0121/2010/81�11�/115307�11� ©2010 The American Physical Society115307-1

http://dx.doi.org/10.1103/PhysRevB.81.115307


switched off, the reservoir simply does not exist anymore.
The action of switch off-on of the environment may be seen
as a physical implementation of trace operation over the res-
ervoir degrees of freedom. Our results show that making a
fast switch off-on �successive switch on-off over a short-time
period� realized by the engineered applied noise, one would
induce Zeno or anti-Zeno dynamics. When the shuttering
time period of the frequent observations is changed, the sys-
tem of interest, i.e., a nanomechanical oscillator, will un-
dergo a QZE to AZE crossover. Here we investigate the oc-
currence of either QZE or AZE of a nanomechanical
oscillator coupled to a nonequilibrium fermionic reservoir
�quantum point-contact detector acting as a measuring de-
vice�.

In this paper, we focus on a nanomechanical oscillator
coupled to a nonequilibrium fermionic reservoir to determine
the occurrence of either the Zeno or the anti-Zeno effect due
to the nonequilibrium fermionic-reservoir-induced decoher-
ence. In our model, QPC detector will act as an engineered
detector. One can switch on-off the electric bias across the
QPC controlling the shuttering time of the effective environ-
ment. In Sec. II, we describe our model for a nanomechani-
cal oscillator coupled to a nonequilibrium fermionic reser-
voir �a QPC acting as measuring device�. We investigate the
non-Markovian regime by taking into account the Fermi-
reservoir correlation. The memory effect on the electron
transport can be studied in detail by modeling the reservoir
spectral densities as Lorentzian functions that has been used
in the study of influence of a measuring lead on quantum
oscillator coupled to an electron reservoirs.19–23 We do not
make here the so-called wideband approximation �energy-
independent spectral density of the electric bath, and energy-
independent tunnel amplitudes and densities of states of the
left and right leads of the QPC tunnel junction� as well as the
high QPC bias-voltage-limit approximation, normally
used24,25 in the derivation of Markovian dynamical equa-
tions. As a consequence, our non-Markovian dynamics of the
nanomechanical oscillator is valid for arbitrary QPC lead
temperatures, and for arbitrary bias voltages, as long as the
perturbation theory that we use holding up to the second
order in the system-environment coupling strength. In Sec.
III, we demonstrate significant the results and discussions.
Finally, Sec. IV contains some conclusions and remarks.

II. MODEL

In this section, we describe the model of nanoelectrome-
chanical resonator �NER� that is subjected to a measurement
by a low-transparency point contact or electric tunneling
junction as a sensitive detector device.5,25–29 The Hamil-
tonian model consists of a quantum harmonic oscillator lin-
early coupled to a nonequilibrium fermionic reservoir25 �a
quantum point-contact detector as a measuring device� �Fig.
1� and derive their corresponding quantum master equations
up to the second order with respect to the system-
environment coupling constant. The Hamiltonian of the NER
which is linearly coupled to the QPC can be written as

H = HS + Hleads + HT, �1�

where

HS =
p2

2M
+

1

2
M�0

2x2, �2�

Hleads = �
k,q

��k
Sck

†ck + �q
Dcq

†cq� , �3�

and

HT = �
k,q

�Tk,q + �kqx�cS,k
† cD,q + �

k,q
�Tk,q

† + �kq
† x�cD,q

† cS,k.

�4�

HS represents the effective Hamiltonian for nanomechanical
oscillator, M is the mass, and �o is the frequency of oscilla-
tor, respectively. The Hamiltonian for the left and right leads
of the QPC detector is represented by Hleads. Here cS,k, cD,q,
and �k

S, �q
D are, respectively, the fermion- �electron� reservoir

annihilation operators and the energies with wave numbers
k ,q for the left and right leads of the QPC. In Eq. �4�, HT
describes the tunneling of the electrons through the QPC
junction under the influence of the displacement x of the
NER. The bare tunneling amplitude between respective
states k and q in the left and right leads �reservoirs� of the
QPC is given by Tk,q. The effective tunneling amplitude27

becomes Tkq+�kqx as a result of the coupling Eq. �4� be-
tween the NER and QPC. We will derive the quantum master
equation for the oscillator under Born approximation which
holds up to second order in the effective tunneling amplitude.
To proceed to the derivation, it is convenient to go to inter-
action picture with respect to H0=HS+Hleads. The dynamics
of the entire system is determined by the time-dependent
Hamiltonian in interaction picture.9,30 For convenience, we
reexpress the tunneling Hamiltonian in the interaction picture
as

HI�t� = eiH0tHTe−iH0t

= �
k,q

�Tkq + �kqx�t��ei��k
S−�q

D�tcS,k
† cD,q + H.c.

= �
k,q

�Qk,q�t�Fk,q
† �t� + Qk,q

† �t�Fk,q�t�� , �5�

where Qk,q�t�= �Tkq+�kqx�t�� and Fk,q�t�=e−i��k
S−�q

D�tcS,kcD,q
†

are operators acting on the Hilbert space of the system
and environment, respectively. Here x�t�=x cos��ot�
+ p

m�o
sin��ot�= � x

2 − i p
2m�o

�exp�i�ot�+ � x
2 + i p

2m�o
�exp�−i�ot�. In

Eq. �5�, we reexpress the tunneling Hamiltonian as follows:

FIG. 1. �Color online� Schematic of a nanomechanical resonator
measured by a quantum point contact �QPC�.
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HI�t� = �
k,q

Skq�t�Fkq
† �t� + Skq

† �t�Fkq�t� , �6�

where

Skq�t� = �P1 + ei��otP2 + e−i��otP3� �7�

is an operator in a discrete Fourier decomposition31 acting
on the Hilbert space of the system. Here P1=Tkq,
P2=�kq� x

2 − i p
2m�o

�, and P3=�kq� x
2 + i p

2m�o
�. The form indicates

that, three possible jump processes, P1 is associated with
elastic tunneling of electrons through QPC, P2 �and P3� are
associated with inelastic excitation �and relaxation� of elec-
trons tunneling through the QPC with an energy transfer
��o. This energy is provided by the oscillator which relaxes
�excites� in response. By regarding the tunneling Hamil-
tonian as perturbation, the second-order cumulant expansion
�Born approximation� leads to the master equation for the
reduced density matrix of the NER system. We will derive
non-Markovian master equation implemented with the
memory kernel prescription.32 By partially taking trace over
the microscopic degrees of freedom of the QPC reservoir and
then changing from the interaction picture to the Schrödinger
picture, we obtain the non-Markovian master equation in the
following form:

�̇R�t� =
1

i�
�HS,�R� −

1

�2�
0

t

dt1 �
k,q;k�,q�

� �Fk,q;k�,q�
s �t,t1�„†Sk,q,�Sk�,q�

† �t,t1�,�R�‡…

+ Fk,q;k�,q�
a �t,t1�„�Sk,q,�Sk�,q�

† �t,t1�,�R	�… + H.c.�
�8�

where the mode-dependent symmetric and antisymmetric
two-time correlation function, Fk,q;k�,q�

s �t , t1� and
Fk,q;k�,q�

a �t , t1� can be written in term of the new variable
��=t− t1� as

Fk,q;k�,q�
s �t,t1�

= Fk,q;k�,q�
s ��,0�

=
1

2

�Fk,q

† ���,Fk�,q��0�	�

=
1

2

�cS,k

† cD,qcD,q�
† cS,k� + cD,q�

† cS,k�cS,k
† cD,q�ei��k

S−�q
D���

�
1

2

�NSk�1 − NDq� + �1 − NSk�NSk	ei��k

S−�q
D����k,q;k�,q�

�9�

and

Fk,q;k�,q�
a �t,t1�

= Fk,q;k�,q�
a ��,0�

=
1

2

�Fk,q

† ���,Fk�,q��0���

=
1

2

�cS,k

† cD,qcD,q�
† cS,k� − cD,q�

† cS,k�cS,k
† cD,q�ei��k

S−�q
D���

�
1

2

�NSk�1 − NDq� − �1 − NSk�NSk	ei��k

S−�q
D����k,q;k�,q�.

�10�

We have transformed the temporal integrals into integrals
over variable �= t− t1. Here the bracket notations
Fk,q;k�,q�

s �� ,0� �and Fk,q;k�,q�
a �� ,0�� indicate the symmetric

�and antisymmetric� combinations of the distribution func-
tion determined by the two-time correlation function of
Fermi environment. The occupation number of Fermi func-
tion is, NSk= 
cS,k

† cS,k���kk�, where 
¯ � stands for the statis-
tical average over the Fermi distribution for left and right

electron reservoirs given by NSk= �e	��k
S−
k�+1�−1 and NDq

= �e	��q
D−
D�+1�−1.33,34 We have used here the basic unravel-

ing schemes, for controlling of continuous variable system.27

Here �R is the reduce density matrix, �R=TrS,D��R � �B
�0��,

where �B
�0�=�S � �D=exp�

−HQPC

kBT � /TrR�exp�
−HQPC

kBT ��. Here 
S

and 
D are the chemical potentials of the source and the
drain reservoir which determine the applied detector voltage,

S−
D=eV, and 	=1 / �kBT� is the inverse temperature.33,34

The structure of the quantum point-contact reservoir is
characterized by the symmetric and antisymmetric two-time
reservoir correlation kernels �k,q;k�,q�Wkq

† ZkqFk,q;k�,q�
s �t , t1�

and �k,q;k�,q�Wkq
† ZkqFk,q;k�,q�

a �t , t1�, where Wkq and Zkq can be
any one of the tunneling amplitudes Tkq or �kq. In the con-
tinuous limit, the summation of reservoir modes can
be replaced by the continuous integrations,
�k�q→d�k

Sd�q
DgL��k�gR��q�, where the energy-dependent

densities of states gS��k� ,gD��q� are introduced for left and
right electron reservoirs.33 In principle, the tunneling ampli-
tudes, Tkq��k

S ,�q
D� and �kq��k

S ,�q
D�, are also energy dependent.

We may deal with relevant energy function of form the den-
sities of states and tunneling amplitudes to take into account
the memory effect of the QPC reservoir on the electron trans-
port and the NER system in non-Markovian treatment. For
simplicity, we follow several non-Markovian electron-
transport studies19–21,23,35 and we consider a Lorentzian spec-
tral density with energy-dependent density of states and tun-
neling amplitudes as

JW,Z��k
S,�q

D� = Wkq
† ��k

S,�q
D�Zkq��k

S,�q
D�gL��k

S�gR��q
D�

�
W00

† Z00gL
0gR

0���2

���k
S − �q

D − Ei��2 + ���2 . �11�

Here Wkq��k
S ,�q

D� and Zkq��k
S ,�q

D� could be any one of the
tunneling amplitudes, Tkq or �kq, the cutoff energy � de-
scribes the width of the Lorentzian energy-dependent distri-
bution, the parameter Ei denotes the variation in the QPC

QUANTUM ZENO AND ANTI-ZENO EFFECT OF A… PHYSICAL REVIEW B 81, 115307 �2010�

115307-3



junction barrier potential due to the interaction with the
NER. The energy dependence of the tunneling amplitudes
and the density of states are absorbed into the combined
form of the denominator of the spectral density, and W00, Z00,
gL

0, and gR
0 are energy-independent tunneling amplitudes and

densities of states near the average chemical potential. In the
limit of �→0 and in absence of the interaction with the NER
�i.e., Ei=0�, the QPC spectral density Eq. �11� is proportional
to ���k

S−�q
D� which represents the resonant tunneling process.

In the opposite case of the cutoff energy �→�, the QPC
spectral density Eq. �11� becomes energy independent and
reduces to the wideband limit �WBL� which spectral density
is recovered with a constant. The average �effective�
electron-tunneling rates through the QPC barrier in the WBL
can be written as =2�W00

† Z00gL
0gR

0 .
Meier et al.36 had investigated expression for bath corre-

lation via the technique of numerical decomposition of the
spectral density and rederived auxiliary density matrices to
be able to describe memory effects. The spectral decomposi-
tion technique has been used for non-Markovian dissipative
system21 with a Lorentzian spectral density to calculate the
fermionic-reservoir correlation function. The spectral density
function is a very important in decomposition technique
which can handle an arbitrary band structure using the pa-
rameter �.37 The width of the Lorentzian distribution is char-
acterized by the cutoff parameter �. The non-Markovian
memory effect arises due to a finite cutoff width of the spec-
tral density function.

With the help of Eqs. �9� and �10� and using the specified
spectral density �Eq. �11��, we can rewrite the master Eq. �8�
into the following form:

�̇R�t� = −
i

�
�HS,�R�t��

−
2gL

0gR
0

�2 ��
j=1

3

�fF
+�t,eV + �� j� + fB

+�t,− eV − �� j��

��PPj
†�R�t� − Pj

†�R�t�P + P�R�t�Pj
† + �R�t�Pj

†P�

− �
j=1

3

�fF
+�t,eV + �� j� − fB

+�t,− eV − �� j��

��PPj
†�R�t� − Pj

†�R�t�P + P�R�t�Pj
† + �R�t�Pj

†P��
+ H.c. �12�

Here P1=T00, P2=�00�
x
2 − i p

2m�o
�, and P3=�00�

x
2 + i p

2m�o
�,

P=� j=1
3 Pj = P1+ P2+ P3, and the frequencies �1=0 and

�2=−�3=�o. Thus the time-dependent coefficients in the
second to the fifth lines of Eq. �12� describe the forward and
backward electron tunneling in elastic �no excitation of the
NER� or inelastic �excitation or relaxation of the NER� pro-
cesses. We have introduced here some new notations
�k

S=�k
S−
k and �q

D=�q
D−
q. Here the time-dependent coef-

ficients of the forward �backward� tunneling rates in elastic
process, fF

��t ,eV� �fB
��t ,−eV�� are given by

fF
��t,eV� � �

0

t

d��
−�

� �
−�

�

d�k
Sd�q

D �2

���k − �q − Ei��2 + �2

�
1

e	�k
S

+ 1
�1 −

1

e	�q
D

+ 1
�e�i��k

S−�q
D−eV��

= Re�f�t,eV�� � i Im�f�t,eV�� �13�

and

fB
��t,− eV� � �

0

t

d��
−�

� �
−�

�

d�k
Sd�q

D �2

���k − �q − Ei��2 + �2

� �1 −
1

e	�k
S

+ 1
� 1

e	�q
D

+ 1
e�i��k

S−�q
D−eV��

= Re�f�t,− eV�� � i Im�f�t,− eV�� . �14�

On the other hand, time-dependent coefficients of the for-
ward �backward� tunneling rates in inelastic process
fF

��t ,eV���o� �fB
��t ,−eV���o�� are given by

fF
��t,eV � ��o� � �

0

t

d��
−�

� �
−�

�

d�k
Sd�q

D

�
�2

���k − �q − Ei��2 + �2

1

e	�k
S

+ 1

��1 −
1

e	�q
D

+ 1
�e�i��k

S−�q
D−eV���o��

= Re�f�t,eV � ��o�� � i Im�f�t,eV � ��o��
�15�

and

fB
��t,− eV � ��o� � �

0

t

d��
−�

� �
−�

�

d�k
Sd�q

D

�
�2

���k − �q − Ei��2 + �2

1

e	�q
D

+ 1

��1 −
1

e	�k
S

+ 1
�e�i��k

S−�q
D−eV���o��

= Re�f�t,− eV � ��o��

� i Im�f�t,− eV � ��o�� . �16�

The non-Markovian environmental memory effect is char-
acterized by the forward and backward correlation functions
fF

��t ,eV�, fB
��t ,−eV�, fF

��t ,eV���o�, and fB
��t ,−eV���o�.

Non-Markovian dynamics usually means past history that
contributes to the current time evolution and memory effects
typically enter through integrals over the past history. Within
the second-order perturbation theory in the system-detector
and system-environment coupling strengths, the non-
Markovian dynamics is determined by the state at the current
time t only.38,39 Finally, the non-Markovian master equation
for the nanomechanical oscillator coupled to a electric tun-
neling junction Eq. �12� reduces to a form similar to the
Markovian Caldeira-Leggett-type master equation26,27,40 as
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�̇R�t� = −
i

�
�HS +

M

2
��e

2�t��x2,�R�t�� −
i

�
�e�t��x,�p,�R�t�	�

−
1

�2De�t�†x,�x,�R�t��‡ +
1

�2he�t�†x,�p,�R�t��‡ . �17�

The whole non-Markovian character of nanomechanical
oscillator is contained in the time-dependent coefficients ap-
pearing in the master equation. The time-dependent coeffi-
cients �e

2�t�, �e�t�, De�t�, and he�t� are respectively given by

�e
2�t� =

�

�M
Im��2

a�t� + �1
a�t�� , �18�

�e�t� =
�

2�M�o
Re��1

a�t� − �2
a�t�� , �19�

De�t� =
��

2�
Re��1

s�t� + �2
s�t�� , �20�

he�t� =
��

2�M�o
Im��1

s�t� − �2
s�t�� . �21�

Where �= 2�
� gL

0gR
0�00

2 , �1
s�t�= f�t ,eV+��o�

+ f�t ,−eV−��o�, �1
a�t�= f�t ,eV+��o�− f�t ,−eV−��o�,

�2
s�t�= f�t ,eV−��o�+ f�t ,−eV+��o�, and �2

a�t�
= f�t ,eV−��o�− f�t ,−eV+��o�. The time-dependent coeffi-
cients in Eqs. �18�–�21� are composed of forward and back-
ward tunneling rates containing the electron bath tempera-
ture, electric voltage, and the oscillator frequency. The
coefficient �e

2�t� leads to a time-dependent energy shift.41

The second and third terms on the right-hand side in Eq. �17�
represent physically the influences of friction and fluctua-
tions of the environment. The damping coefficient �e�t� and
diffusion coefficient De�t� are determined by the real part of
the reservoir QPC correlation functions. On the other hand,
the time-dependent coefficient he�t� is determined by the
imaginary part of the QPC reservoir correlation function. We
can calculate explicitly all the time-dependent non-
Markovian transport coefficients and compare with their
Markovian counterpart in various time scales. The time-
dependent coefficients of the diffusion and damping terms
De�t� and �e�t� are plotted in Figs. 2�a� and 2�b� with differ-
ent finite Lorentzian cutoff strengths ��� in the non-
Markovian region. The coefficients De�t� and �e�t� are plot-
ted in Figs. 2�c� and 2�d� for different electric bias voltage in
the non-Markovian region. We see �Fig. 2� that the non-
Markovian time-dependent coefficients De�t� and �e�t� ap-
proach to the Markovian value at large time as one increases
the cutoff frequency �. Under this wideband ��→�� and
long-time limit, our non-Markovian master equation reduces
to Caldeira-Leggett-type Markovian master equation as dis-
cussed in Refs. 27 and 40. We have explicitly shown this in
Appendix. In the Markovian case �when the bath correlation
time is shorter than the system response time�, we assume
that the bath correlation function is delta function. Under
those two limit, the Markovian coefficients are given by

�e
M = lim

�,t→�
�e�t� =

2�gL
0gR

0�00
2

M
=

�

M
� �22�

and

De
M = lim

�,t→�
De�t�

=
��

2
��eV + ��o�coth

eV + ��o

2kBT

+ �eV − ��o�coth
eV − ��o

2kBT
�

=
M�e

M

2
��eV + ��o�coth

eV + ��o

2kBT

+ �eV − ��o�coth
eV − ��o

2kBT
� . �23�

In the non-Markovian case, De�t� and �e�t� depend on
electric bias voltage, electric reservoir temperature, and os-
cillator frequency. But in the Markovian limit, the coefficient
De

M depends upon those parameters.27 The phenomenological
parameters De

M and �e
M are related to each other by the

fluctuation-dissipation theorem. In the special case of zero
temperature and high-voltage case, we simply have
De

M =��e
MeV which is exactly the same result that was ob-

tained in Refs. 25–27. Also, in the high-temperature limit42

when kBT�eV or ��o, the diffusion coefficient
De

M =2��e
MkBT. It is clear from Fig. 2 that the non-

Markovian dynamics is quite different in general from the
Markovian case.
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FIG. 2. �Color online� The time-dependent coefficients De�t�
and �e�t� for the non-Markovian case are plotted against time in
Figs. 2�a� and 2�b� with different Lorentzian cutoff strengths �
�from top to bottom �=1,10,100,��. The value of the other pa-
rameters for Figs. 2�a� and 2�b� are eV=0.1�0; 	=10�0. The coef-
ficients De�t� and �e�t� for the non-Markovian case are plotted in
Figs. 2�c� and 2�d� with different electric bias voltage eV �from top
to bottom eV=0.1�0 ,0.5�0 ,3�0 ,10�0�. The value of the other pa-
rameters for Figs. 2�c� and 2�d� are 	=10�0, �=10.
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Next we discuss our main results indicate that the occur-
rence of the Zeno or the anti-Zeno effect stems from the
short-time behavior of the Fermi-reservoir-induced decoher-
ence showing the Zeno-anti-Zeno crossover.

III. RESULT AND DISCUSSION

The time-dependent coefficients appearing in Eq. �17�
contain all the information about the short-time system-
reservoir correlation. Consequently, each switching off and
on process will reset the correlations between the system and
the environment. The use of artificial controllable engineered
environments has been recently demonstrated for single
trapped ions.17 Averaging over the rapidly oscillating terms
appearing in the time-dependent coefficients of Eq. �17�, one
gets the following secular approximation in Refs. 13 and 43
of master equation, by means of rotating wave approxima-
tions performed after tracing over the environment in Eq.
�17�,13,44

�̇R�t� = −
i

�
�HS,�R�t��

+
De�t� + �e�t�

2
�2a�R�t�a† − a†a�R�t� − �R�t�a†a�

+
De�t� − �e�t�

2
�2a†�R�t�a − aa†�R�t� − �R�t�aa†� ,

�24�

where we have introduced the bosonic annihilation and cre-

ation operators a=�m�o

2� �x+ i p
m�o

� and a†=�m�o

2� �x− i p
m�o

�.
The form of the Eq. �24� is similar to the Lindblad form
master equation for the reduced density matrix of the system
harmonic oscillator. The non-Markovian process is character-
ized by the time-dependent coefficients De�t� and �e�t� ap-
pearing in the master equation which is known as diffusion
and dissipation coefficients, respectively. We assume that the
NER system is initially prepared in one of the eigenstates of
its Hamiltonian HS, i.e., a Fock state �n�. We are interested in
the reduced system dynamics when its engineered artificial
reservoir is switch off and on at a time interval �.45 Conse-
quently, each switching off and on process will reset the
correlations between the system and environment. Assuming
the initial oscillator state to be in a Fock state, the recursive
use of the master equation �Eq. �24�� leads to the following
equation for the density matrix of the reduced system
�oscillator�:15,44,45

�̇R�t� = −
i

�
�HS,�R�t��

+ Pn
↓����a�R�t�a† −

1

2
a†a�R�t� −

1

2
�R�t�a†a�

+ Pn
↑����a†�R�t�a −

1

2
aa†�R�t� −

1

2
�R�t�aa†� ,

�25�

where the decay coefficients are written as

Pn
↓��� = n�

0

�

�De�t� + �e�t��d� �26�

and

Pn
↑��� = �n + 1��

0

�

�De�t� − �e�t��d� . �27�

Here Pn
↓��� and Pn

↑��� are probabilities for the upward and
downward transitions, respectively. For an initial Fock state
�n�, there exist two possible decay channels associated with
the upward and downward transitions to the states �n+1� and
�n−1�, respectively. The probability that the oscillator make
a transition to the state �n−1� or �n+1� from its initial state
�n� after a short-time interval � can be written as

P̄n���= Pn
↑���+ Pn

↓���. Then the survival probability for the

system to remain in its initial state Pn���=1− P̄n���. From
Eq. �25�, one gets

d�nn�t�
dt

= − ��n + 1��De�t� − �e�t�� + n�De�t� + �e�t��	�nn�t� ,

�28�

where �nn�t�= 
n��R�t��n� is the survival probability for the
system to stay in the initial state �n�. Frequent measurements
at extremely short-time interval may slow down the decay
process because the decay of the upward and downward
states are almost zero at the beginning of the decay
process.15,46 The QZE predicts that the decay of the unstable
system can be slowed down by measuring the system suc-
cessively and frequently enough. A QZE typically arises if
one performs a series of “measurements,” at a time interval
�, in order to ascertain whether the system is still in its initial
state.14 For this measurement purpose, we use the term shut-
tered reservoir, and assume that � is so short that expansion
yields a quadratic behavior. Let Pn��� denotes the
survival probability �after a short-time interval �� for the sys-
tem to stay at the initial state, which can be written as
Pn���=exp�−�n

Z�����.46 After the Nth measurement the sur-
vival probability reads14,15,47

Pn
�N��t� = Pn���N � exp�− �n

Z���t� , �29�

where t=N� is the total duration of the experiment and �n
Z���

is the effective decay rate.14 In Eq. �29�, we have assumed
that the probability Pn��� factorizes.14 The behavior of the
effective decay rate appearing in Eq. �29� also quantifies the
Zeno or anti-Zeno effect. Assuming that � is small enough
and keeping only the first two terms in the expansion of the
exponential appearing in Eq. �29�, one easily gets

�n
Z��� =

1

���2n + 1��
0

�

De�t�d� − �
0

�

�e�t�d�� . �30�

The quantification of the Zeno �QZE� and the anti-Zeno
�AZE� effect is given by the ratio15
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�n
Z���
�n

0 =

�2n + 1��
0

�

De�t�d� − �
0

�

�e�t�d�

���2n + 1�De
M − �e

M�
. �31�

We indicate with �n
0 the Markovian decay rate �the constant

spectral density, �→�, and long-time limit� of the survival
probability, as predicted by Fermi golden rule. If a finite time
�† such that �n

Z��†�=�n
0 exists in the Markovian regime, then

for ���† we have �n
Z��� /�n

0�1, i.e., the measurements
hinder the decay �QZE�. On the other hand, if it has
�n

Z��� /�n
0�1, and the measurements enhance the decay

�AZE�.15 In the standard definition of the QZE, the behavior
of the effective decay rate in Eq. �31� is associated with the
Markovian rate, �n

0, identifies the occurrence of the Zeno or
the anti-Zeno effect.15 In contrast, we identify qualitative
definition, the QZE takes place as the population decay rate
decreases when � becomes smaller. On the other hand, when
the decay rate increases for smaller �, i.e., measurements
enhance the decay, shows the AZE.47

De
M and �e

M describes Markovian values of the diffusion
and damping coefficients, respectively. If a finite time �†

such that �n
Z��†�=�n

0 exists in the Markovian region, then for
���†, we have �n

Z��� /�n
0�1, i.e., the measurements hinder

the decay �QZE�. On the other hand, we have �n
Z��� /�n

0�1,
i.e., the measurements enhance the decay �AZE�. The ana-
lytic expression of the diffusion �damping� coefficients al-
lows us to work out the relevant system and reservoir param-
eters showing the crossover between the QZE and AZE in
Eq. �31�. The Markovian dynamics of the nanomechanical
resonator is recovered at large-time limit of the non-
Markovian counterpart. Here we investigate the occurrence
of either QZE or AZE of a nanomechanical oscillator
coupled to a nonequilibrium fermionic reservoir �quantum
point-contact detector acting as a measuring device�. The
QPC, considered here, is a charge-sensitive detector that can
be easily controlled by the source and drain electric bias and
bath temperature. The eigenstates of the oscillator are not
localized, either in position or in momentum, and it is sensi-
tive to the environment-induced dissipation. Figure 3 dis-
plays the effective decay rate over a shuttering time period of
the frequent observations. It illustrates how a nanomechani-
cal oscillator coupled to a nonequilibrium fermionic reser-
voir �a QPC acting as measuring device� exhibits the Zeno
and the anti-Zeno effect. Moreover, one can control the shut-
tering time of effective environment by doing switch on-off
the electric bath of finite temperature and finite bias voltage
across QPC. In Figs. 3�a1�–3�c1�, we plot the ratio between
the effective decay rate �n

Z��� and the Markovian decay rate
�0

Z from the high to the low cutoff regime for electric bath of
different temperature strengths. Figures 3�a2�–3�c2� show the
variation in the ratio of the diffusion coefficient De��� and its
Markovian value DM from the high to the low cutoff regime
for electric bath of different temperature strengths. Our
analysis shows that there exist two relevant parameters,
namely, the ratio � /�0, quantifying the spectral cutoff
strength, and the ratio kBT /�0. We find that for high tempera-
ture, 	=0.1�0, a Zeno-type situation exists from high to low
cutoff strengths as it is shown in Figs. 3�a1�–3�c1�. This can

be understood due to environment-induced decoherence by
showing the short-time dynamics of De��� /DM. For high res-
ervoir temperatures, the quantity effectively ruling the dy-
namics is the diffusion coefficient De�t� since De�t���e�t�.
In other words, for short times and high temperature, the
diffusion, De�t� is dominant with respect to dissipation. For
decreasing temperatures, the amplitudes of De�t�
becomes smaller. For very low reservoir temperatures
�kBT�0,n�0�, DM ��M and therefore the denominator of
Eq. �31� approaches zero, implying that �n

Z��� /�0
Z�1 where

measurement enhance the decay �AZE� for short evolution
time. Generally in the study of a nanomechanical oscillator
coupled to a nonequilibrium fermionic reservoir �a QPC act-
ing as measuring device�, one assumes high cutoff strength
�� /�0=100� corresponding to a natural Markovian reservoir
with �→�. In this case, it is straightforward to show that
De�t���e�t� for short evolution times. When the expectation
values of diffusion term is greater than its Markovian value,
the measured system goes through a stronger effective
environment-induced decoherence resulting to a faster or ac-
celerated decay �AZE� of the system as shown in Fig. 3 in
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FIG. 3. �Color online� �a1� Ratio between the effective decay
rate �n

Z��� and the Markovian decay rate �0
Z are plotted in the high

cutoff ��=100�o� regime for electric bath of different temperature
strengths. �a2� Ratio of the diffusion coefficient De��� and its Mar-
kovian value DM are plotted in the high cutoff regime for electric
bath of different temperature strengths. De��� and its Markovian
value DM in the high cutoff regime for electric bath of different
temperature strengths. �b1� Ratio between the effective decay rate
�n

Z��� and the Markovian decay rate �0
Z are plotted in intermediate

cutoff regime for electric bath of different temperature strengths.
�b2� Ratio of the diffusion coefficient De��� and its Markovian value
DM are shown in the intermediate cutoff regime for electric bath of
different temperature strengths. �c1� Ratio between the effective de-
cay rate �n

Z��� and the Markovian decay rate �0
Z are shown in low

cutoff regime for electric bath of different temperature strengths.
�c2� Ratio of the diffusion coefficient De��� and its Markovian value
DM are plotted in low cutoff regime for electric bath of different
temperature strengths. The value of the other parameters are
eV=0.1�0; 	=30.
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low temperature and higher cutoff strength. On the contrary,
when the effect of environment-induced decoherence is
smaller than Markovian one, the QZE occurs as shown in
Fig. 3 in the high temperature and higher cutoff strength.

To better understand such a behavior of exhibiting Zeno
and anti-Zeno effects. we consider three different regimes of
the ratio � /�0 between the reservoir cutoff frequency and the
system oscillator frequency: high cutoff � /�0=100, interme-
diate cutoff � /�0=10, and low cutoff � /�0=1 regimes.
Form Figs. 4�a�, 5�a�, and 6�a� we see that for high voltage
�eV=10�0�, a Zeno-type situation exists for any arbitrary
value of the cutoff strengths. For high electric bias voltage,
the quantity effectively ruling the dynamics is the diffusion
coefficient De�t� since De�t���e�t�. In this case, the effective
decay rate depends only on the diffusion coefficient De�t�. In
other words, for short times and high electric bias voltage,
the diffusion is mainly dominant with respect to dissipation.
The reason is a strong environment-induced decoherence, for
which the effect of environment-induced decoherence is
smaller than Markovian one, the QZE occurs.

On the other hand, for decreasing electric bias voltage, the
amplitudes of De�t� becomes smaller for a smaller
environment-induced decoherence. For a reservoir with very
low electric bias voltage �eV��o�, DM ��M and the de-
nominator of Eq. �31� approaches zero, implying that
�n

Z��� /�0
Z�1 where the measurement enhance the decay. It

shows that a Zeno-anti-Zeno crossover appears with anti-
Zeno effect appearing for short evolution time, and Zeno
effect appearing for long times. This can be observed as a
crossing between Zeno to anti-Zeno region as shown in Figs.

4�b� and 5�b�. In the low cutoff frequency regimes, it corre-
sponds to an engineered “out-of-resonance” reservoir.13 In
this case, the reservoir correlation time is bigger than the
nanomechanical oscillator period. Another interesting aspect
is the in intermediate cutoff regime, where it is shown
�Fig. 5� that a Zeno-anti-Zeno crossover exists for smaller
electronic bias or low temperature. For �0��, the region in
which only Zeno dynamics may occur in low cutoff energy
due to smaller decoherence is shown in Fig. 6.

IV. CONCLUSION

In summary, we have presented and discussed the influ-
ence of the fermionic reservoir on the occurrence of QZE or
AZE by varying finite cutoff frequency, electric bias-voltage
strengths, and the electric bath temperature. We have inves-
tigated the non-Markovian dynamics of nanomechanical os-
cillator coupled to a nonequilibrium fermionic reservoir,
implemented with the memory kernel prescription, by par-
tially taking trace over the detector’s microscopic degrees of
freedom. We stress that the Markovian approximation is not
applicable when the characteristic time of the relevant sys-
tem become comparable with the reservoir correlation time
showing the memory effect of the environment. By regarding
the tunneling Hamiltonian as perturbation, the second-order
cumulant expansion �Born approximation� leads to the mas-
ter equation for the reduced density matrix of the central
transport system. We derived non-Markovian form of the
master equation, implemented with the memory kernel pre-
scription, by partially taking trace over the detector’s micro-

FIG. 4. �Color online� �a� Ratio between the effective decay rate
�n

Z��� and the Markovian decay rate �0
Z are plotted in the high cutoff

regime for electric bias-voltage strengths �eV /�o=0.1,0.5,3 ,10�.
�c� Ratio of the diffusion coefficient De��� and its Markovian value
DM are shown in the high cutoff regime for different electric bias-
voltage strengths �eV /�o=0.1,0.5,3 ,10�. The value of the other
parameters in �a� and �c� are �=100�o , 	=30�o. �b� Function of
the bias voltage with ratio between the effective decay rate �n

Z���
and the Markovian decay rate �0

Z are plotted contour in the high
cutoff regime for different electric bias-voltage strengths. �d� Func-
tion of the bias voltage with ratio of the diffusion coefficient De���
and its Markovian value DM are shown in the high cutoff regime for
different electric bias-voltage strengths. The value of the other pa-
rameters in �b� and �d� are �=100�o and 	=30�0.

FIG. 5. �Color online� �a� Ratio between the effective decay rate
�n

Z��� and the Markovian decay rate �0
Z are plotted in the interme-

diate cutoff regime for different electric bias-voltage strengths. �c�
Ratio of the diffusion coefficient De��� and its Markovian value DM

are shown in the intermediate cutoff regime for different electric
bias-voltage strengths. The value of the other parameters in �a� and
�c� are �=10�o, 	=30�o. �b� Function of the bias voltage with
ratio between the effective decay rate �n

Z��� and the Markovian
decay rate �0

Z are plotted three-dimensional in the intermediate cut-
off regime for different electric bias-voltage strengths. �d� Function
of the bias voltage with ratio of the diffusion coefficient De��� and
its Markovian value DM are shown in the intermediate cutoff re-
gime for different electric bias-voltage strengths. The value of the
other parameters in �b� and �d� are �=10�o and 	=30�o.
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scopic degree of freedom. In the Markovian limit, the master
equation is of the form of Caldeira-Leggett type, consists of
a damping and decoherence terms, even though the elec-
tronic environment is in a nonequilibrium state. We report
our numerical results of these coefficients depending
uniquely on the form of the reservoir spectral density, envi-
ronmental temperature, and bias voltage in the non-
Markovian regime.

We have investigated the occurrence of either QZE or
AZE of a nanomechanical oscillator coupled to a nonequilib-
rium fermionic reservoir �quantum point-contact detector
acting as a measuring device�. The transition from Zeno to
anti-Zeno behavior can be controlled by changing the values
of the system and reservoir parameters �such as the oscillator
frequency, energy cutoff, bias voltage, and reservoir tem-
perature�.
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APPENDIX

In this section, we show that under appropriate limits, our
non-Markovian master equation reduces to the Markovian

master equation as reported in the literature.25–27 The Mar-
kovian approximation is known to be valid when the bath
correlation time is much smaller than the characteristic time
scale of the system of interest. The environment correlation
time is determined by the bath correlation functions �kernels�
and is associated with the form of spectral density. Under the
Markovian limit, the bath correlation function �kernel� is �
correlated in time and integration limit t in Eqs. �13�–�16� for
QPC reservoirs can be taken as t→�. Thus, if we take the
Markovian approximation of very short correlation times �in-
tegration limit t→�� and the wideband limit ��→��, then
the time-dependent coefficients in the master Eqs. �8�, �12�,
and �17� become time independent. On making use of the
formula

lim
t→�
�

o

t

d�ei��−�o�� = ���� − �o� + iPV� 1

� − �o
� , �A1�

where PV indicates the Cauchy principle value. The func-
tions in Eqs. �13�–�16� for QPC reservoirs can be written as

lim
t→�

fF�B�
� �t,x� � W�x� � i�F�B��x� , �A2�

where

W�x� = �
x

1 − e−x/kBT , �A3�

�F�x� = �
−�

� �
−�

�

d�k
Sd�q

DJW,Z��k
S,�q

D�
W00Z00

�
1

e	�k
S

+ 1
�1 −

1

e	�q
D

+ 1
�PV� 1

�k
S − �q

D − x� ,

�A4�

�B�x� = �
−�

� �
−�

�

d�k
Sd�q

DJW,Z��k
S,�q

D�
W00Z00

�
1

e	�q
D

+ 1
�1 −

1

e	�k
S

+ 1
�PV� 1

�k
S − �q

D − x� .

�A5�

The real part W�x�= x
1−exp�−	�x�� describes the tunneling rate

and the imaginary part �F�B��x� is Cauchy principal value.
Using Eq. �A2� in Eq. �17�, we can have the Markovian
Master equation,27

�̇R =
1

i�
�HS,�R� −

i

�
�e

M�x,�p,�R	� −
1

�2De
M
†x,�x,�R�‡

+
1

�2he
M
†x,�p,�R�‡ , �A6�

where the bare oscillator Hamiltonian, HS= 1
2 M�o

2x2, comes
from the antisymmetric combinations of the distribution
function in Eq. �10�. It can be seen that at large times, the
frequency shift, �e

2�t�, is equal to −�c
2. The added counter-

term is to cancel the frequency shift at long times and the
system cannot lower its potential energy below the original

FIG. 6. �Color online� �a� Ratio between the effective decay rate
�n

Z��� and the Markovian decay rate �0
Z are plotted in the low cutoff

regime for different electric bias-voltage strengths. �c� Ratio of the
diffusion coefficient De��� and its Markovian value DM are shown
in the low cutoff regime for different electric bias-voltage strengths.
The parameters are 	=30�0; �=1, up line down line with
eV=0.1,0.5,3 ,10�0 shown that �a� and �c� parts. �b� Function of
the bias voltage with ratio between the effective decay rate �n

Z���
and the Markovian decay rate �0

Z are plotted contour in the low
cutoff regime for different electric bias-voltage strengths. �d� Func-
tion of the bias voltage with ratio of the diffusion coefficient De���
and its Markovian value DM are shown in the low cutoff regime for
different electric bias-voltage strengths. Other parameters are used
�=1, 	=30�0 shown that �b� and �d� parts.
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�bare oscillator frequency to the oscillator frequency with the
renormalized, the shift is compensated to counterterm�
value.9,27

As a result, in the Markovian limit, the frequency renor-
malization, the damping coefficient, and the diffusion coef-
ficients in Eqs. �18�–�21� due to the QPC reservoirs in the
wideband limit ��→�� become, respectively,

��e
M�2 =

�

�M
��F�eV + ��o� − �B�− eV − ��o�

+ �F�eV − ��o� − �B�− eV + ��o�	 , �A7�

�e
M =

�

M
� , �A8�

De
M =

��

2
��eV + ��o�coth

eV + ��o

2kBT

+ �eV − ��o�coth
eV − ��o

2kBT
� , �A9�

he
M =

��

2�M�o
��F�eV + ��o� + �B�− eV − ��o�

− �F�eV − ��o� − �B�− eV + ��o�	 . �A10�

We recall that the dissipation and the noise kernel De
M and

�e
M were introduced in the Eqs. �A8� and �A9�. The Markov-

ian limit is obtained in the t→� and wideband �WB� limit.
Then it originates, he

M, in symmetric combinations of the
distribution function �Eq. �9�� via integrals of Fermi surface
that is energy shift or virtual processes in Eq. �A10�.27 In Eq.
�A6�, time-independent coefficients are exact solution with
the previous paper27 that is taking trace over the detector’s
microscopic degree of freedom.
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