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Introduction 
–  Classification is an important and common problem 

•  Churn analysis, fraud detection, etc….even product 
recommendations 

–  Many observations and variables, non-linear 
relationships 

–  Non-linear and non-parametric models are popular 
solutions, but they are slow and difficult to interpret 

–  Our solution 
•  Automated feature generation with polynomial mappings 
•  Regularized regressions with various performance 

optimizations 





–  Linear : In the data’s original input space, labels can be 
classified by a linear decision boundary. 
 

–  Nonlinear : The classifiers have nonlinear, and possibly 
discontinuous decision boundaries. 

Linear / Nonlinear Classification 



Linear Classifier Examples 
–  Logistic Regression 

 
–  Support Vector Machine 

 
–  Naive Bayes Classifier 

 
–  Linear Discriminant Analysis 



Nonlinear Classifier Examples 
–  Kernel Support Vector Machine 

 
–  Multi-Layer Neural Networks 

 
–  Decision Tree / Random Forest 

 
–  Gradient Boosted Decision Trees 

 
–  K-nearest Neighbors Algorithm 



Feature Engineering 

Decision Boundary in  
Transformed Space 

Decision Boundary in  
Original Space 



Feature Engineering 

Ref: https://youtu.be/3liCbRZPrZA 



Low-Degree Polynomial Mappings 
–  2nd Order Example: 

 
 

–  The dimension of d-degree polynomial mappings 
 
 
 

–  C.J. Lin, et al., Training and Testing Low-degree 
Polynomial Data Mappings via Linear SVM, JMLR, 2010 



2-Degree Polynomial Mapping 
–  2-Degree Polynomial Mapping:  

# of features = O(n2) for one training sample 
–  2-Degree Polynomial Kernel Method: 

# of features = O(nl) for one training sample 
–  n is the dimension of original training sample,  

l is the number of training samples.  
–  In typical setting, l >> n. 
–  For sparse data, n is the average # non-zeros, 

O(n2) << O(n2) ;  O(n2) << O(nl) 



Kernel Methods vs Polynomial 
Mapping 



Cover’s Theorem 
A complex pattern-classification problem, cast in a 
high-dimensional space nonlinearly, is more likely 
to be linearly separable than in a low-dimensional 
space, provided that the space is not densely 
populated.  
 
— Cover, T.M. , Geometrical and Statistical 
properties of systems of linear inequalities with 
applications in pattern recognition., 1965 



Logistic Regression & Overfitting 
–  Given a decision boundary, or a hyperplane ax1 + bx2 + c = 0  

 
–  Distance from a sample to hyperplane 

   Same classification result but more 
sensitive probability 
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Finding Hyperplane 
–  Maximum Likelihood Estimation: From a training dataset 

 
 

–  We want to find      that maximizes the likelihood of data  
 
 

–  With linear separable dataset, likelihood can always be 
increased with the same hyperplane by multiplying a constant 
into weights which resulting steeper curve in logistic function. 

–  This can be addressed by regularization to reduce model 
complexity which increases the accuracy of prediction on 
unseen data.  



Training Logistic Regression 
–  Converting the product to summation by taking the natural 

logarithm of likelihood will be more convenient to work with. 
 

–  The negative log-likelihood will be our loss function 
 
 

 



Regularization 
–  The loss function becomes 

 
 

–  The loss function of regularization doesn’t depend on data. 
 

–  Common regularizations are 

- L2 Regularization: 

- L1 Regularization: 

- Elastic-Net Regularization: 



Geometric Interpretation 
–  The ellipses indicate the posterior distribution for no 

regularization. 
 

–  The solid areas show the  
constraints due to  
regularization. 
 

–  The corners of the L1  
regularization create more 
opportunities for the solution  
to have zeros for some of the weights. 



Intuitive Interpretation  
–  L2 penalizes the square of weights resulting very strong 

“force” pushing down big weights into tiny ones. For small 
weights, the “force” will be very small. 
 

–  L1 penalizes their absolute value resulting smaller “force” 
compared with L2 when weights are large. For smaller 
weights, the “force” will be stronger than L2 which drives 
small weights to zero. 
 

–  Combining L1 and L2 penalties are called Elastic-Net 
method which tends to give a result in between. 



Optimization 
–  We want to minimize loss function  

 
–  First Order Minimizer - require loss, gradient vector of loss 

•  Gradient Descent                          is learning rate 
•  L-BFGS (Limited-memory BFGS) 
•  OWLQN (Orthant-Wise Limited-memory Quasi-Newton) for L1 
•  Coordinate Descent 

–  Second Order Minimizer - require loss, gradient, hessian matrix of loss 
•  Newton-Raphson, quadratic convergence which is fast! 

 
Ref: Journal of Machine Learning Research 11 (2010) 3183-3234, 

  Chih-Jen Lin et al. 



Issue of Second Order Minimizer 
–  Scale horizontally (the numbers of training data) by 

leveraging on Spark to parallelize this iterative optimization 
process. 
 

–  Don't scale vertically (the numbers of training features).  
 

–  Dimension of Hessian Matrix:  dim(H) = n2 
 

–  Recent applications from document classification and 
computational linguistics are of this type. 



Apache Spark Logistic Regression  
–  The total loss and total gradient have two part; model part 

depends on data while regularization part doesn’t depend on 
data. 
 
 
 

–  The loss and gradient of each sample is independent. 
 
 
 
 
 



Apache Spark Logistic Regression  
–  Compute the loss and gradient in parallel in executors/

workers; reduce them to get the lossSum and 
gradientSum in driver/controller.  
 

–  Since regularization doesn’t depend on data, the loss 
and gradient sum are added after distributed 
computation in driver. 
 

–  Optimization is done in single machine in driver; L1 
regularization is handled by OWLQN optimizer. 
 
 
 
 



Apache Spark Logistic Regression  

Broadcast Weights  
to Executors 

Driver/Controller 

Executors/Workers 

Loop until converge 

Initialize 
Weights 

Compute loss and 
gradient for each 
sample, and sum 
them up locally 

Final Model 
Weights 

Compute loss and 
gradient for each 
sample, and sum 
them up locally 

Compute loss and 
gradient for each 
sample, and sum 
them up locally 

Reduce from 
executors to 
get lossSum 

and 
gradientSum 

Handle 
regularization 

and use LBFGS/
OWLQN to find 

next step 

Driver/Controller 



Apache Spark Linear Models  
–  [SPARK-5253] Linear Regression with Elastic Net (L1/L2)  

[SPARK-7262] Binary Logistic Regression with Elastic Net 
•  Author: DB Tsai, merged in Spark 1.4 
•  Internally handle feature scaling to improve convergence and 

avoid penalizing too much on those features with low variances 
•  Solutions exactly match R’s glmnet but with scalability 
•  For LiR, the intercept is computed using close form like R 
•  For LoR, clever initial weights are used for faster convergence 

–  [SPARK-5894] Feature Polynomial Mapping  
•  Author: Xusen Yin, merged in Spark 1.4 

 
 
 



Convergence: a9a dataset 



Convergence: news20 dataset 



Convergence: rcv1 dataset 



Polynomial Mapping Experiment 
–  New Spark ML Pipeline APIs allows us to construct 

the experiment very easily. 
–  StringIndexer  for converting a string of labels into 

label indices used in algorithms. 
–  PolynomialExpansion  for mapping the features into 

high dimensional space.  
–  LogisticRegression  for training large scale Logistic 

Regression with L1/L2 Elastic-Net regularization.  





Datasets 
–  a9a, ijcnn1, and webspam datasets are used in the experiment. 

 
 
 















Comparison 
Test 

Accuracy 
Linear SVM Linear SVM 

Degree-2 
Polynomial 

SVM RBF 
Kernel 

Logistic 
Regression 

Logistic 
Regression 
Degree-2 

Polynomial 

a9a 84.98 85.06 85.03 85.0 85.26 

ijcnn1 92.21 97.84 98.69 92.0 97.74 

webspam 93.15 98.44 99.20 92.76 98.57 

–  The results of Linear and Kernel SVM experiment are from 
C.J. Lin, et al., Training and Testing Low-degree Polynomial Data 
Mappings via Linear SVM, JMLR, 2010 



Conclusion 
–  For some problems, linear methods with feature 

engineering are as good as nonlinear kernel methods. 
–  However, the training and scoring are much faster for linear 

methods. 
–  For problems of document classification with sparsity, or 

high dimensional classification, linear methods usually 
perform well.  

–  With Elastic-Net, sparse models get be trained, and the 
models are easier to interpret.   



Thank you! 
 

Questions? 


