
Large-Scale Lasso and
Elastic-Net Regularized
Generalized Linear Models

DB Tsai

Steven Hillion

Outline
–  Introduction

–  Linear / Nonlinear Classification

–  Feature Engineering - Polynomial Expansion

–  Big-data Elastic-Net Regularized Linear Models

Introduction
–  Classification is an important and common problem

•  Churn analysis, fraud detection, etc….even product
recommendations

–  Many observations and variables, non-linear
relationships

–  Non-linear and non-parametric models are popular
solutions, but they are slow and difficult to interpret

–  Our solution
•  Automated feature generation with polynomial mappings
•  Regularized regressions with various performance

optimizations

–  Linear : In the data’s original input space, labels can be
classified by a linear decision boundary.

–  Nonlinear : The classifiers have nonlinear, and possibly
discontinuous decision boundaries.

Linear / Nonlinear Classification

Linear Classifier Examples
–  Logistic Regression

–  Support Vector Machine

–  Naive Bayes Classifier

–  Linear Discriminant Analysis

Nonlinear Classifier Examples
–  Kernel Support Vector Machine

–  Multi-Layer Neural Networks

–  Decision Tree / Random Forest

–  Gradient Boosted Decision Trees

–  K-nearest Neighbors Algorithm

Feature Engineering

Decision Boundary in
Transformed Space

Decision Boundary in
Original Space

Feature Engineering

Ref: https://youtu.be/3liCbRZPrZA

Low-Degree Polynomial Mappings
–  2nd Order Example:

–  The dimension of d-degree polynomial mappings

–  C.J. Lin, et al., Training and Testing Low-degree
Polynomial Data Mappings via Linear SVM, JMLR, 2010

2-Degree Polynomial Mapping
–  2-Degree Polynomial Mapping:

of features = O(n2) for one training sample
–  2-Degree Polynomial Kernel Method:

of features = O(nl) for one training sample
–  n is the dimension of original training sample,

l is the number of training samples.
–  In typical setting, l >> n.
–  For sparse data, n is the average # non-zeros,

O(n2) << O(n2) ; O(n2) << O(nl)

Kernel Methods vs Polynomial
Mapping

Cover’s Theorem
A complex pattern-classification problem, cast in a
high-dimensional space nonlinearly, is more likely
to be linearly separable than in a low-dimensional
space, provided that the space is not densely
populated.

— Cover, T.M. , Geometrical and Statistical
properties of systems of linear inequalities with
applications in pattern recognition., 1965

Logistic Regression & Overfitting
–  Given a decision boundary, or a hyperplane ax1 + bx2 + c = 0

–  Distance from a sample to hyperplane

 Same classification result but more
sensitive probability

z

z

z

Finding Hyperplane
–  Maximum Likelihood Estimation: From a training dataset

–  We want to find that maximizes the likelihood of data

–  With linear separable dataset, likelihood can always be
increased with the same hyperplane by multiplying a constant
into weights which resulting steeper curve in logistic function.

–  This can be addressed by regularization to reduce model
complexity which increases the accuracy of prediction on
unseen data.

Training Logistic Regression
–  Converting the product to summation by taking the natural

logarithm of likelihood will be more convenient to work with.

–  The negative log-likelihood will be our loss function

Regularization
–  The loss function becomes

–  The loss function of regularization doesn’t depend on data.

–  Common regularizations are

- L2 Regularization:

- L1 Regularization:

- Elastic-Net Regularization:

Geometric Interpretation
–  The ellipses indicate the posterior distribution for no

regularization.

–  The solid areas show the
constraints due to
regularization.

–  The corners of the L1
regularization create more
opportunities for the solution
to have zeros for some of the weights.

Intuitive Interpretation
–  L2 penalizes the square of weights resulting very strong

“force” pushing down big weights into tiny ones. For small
weights, the “force” will be very small.

–  L1 penalizes their absolute value resulting smaller “force”
compared with L2 when weights are large. For smaller
weights, the “force” will be stronger than L2 which drives
small weights to zero.

–  Combining L1 and L2 penalties are called Elastic-Net
method which tends to give a result in between.

Optimization
–  We want to minimize loss function

–  First Order Minimizer - require loss, gradient vector of loss

•  Gradient Descent is learning rate
•  L-BFGS (Limited-memory BFGS)
•  OWLQN (Orthant-Wise Limited-memory Quasi-Newton) for L1
•  Coordinate Descent

–  Second Order Minimizer - require loss, gradient, hessian matrix of loss
•  Newton-Raphson, quadratic convergence which is fast!

Ref: Journal of Machine Learning Research 11 (2010) 3183-3234,

 Chih-Jen Lin et al.

Issue of Second Order Minimizer
–  Scale horizontally (the numbers of training data) by

leveraging on Spark to parallelize this iterative optimization
process.

–  Don't scale vertically (the numbers of training features).

–  Dimension of Hessian Matrix: dim(H) = n2

–  Recent applications from document classification and
computational linguistics are of this type.

Apache Spark Logistic Regression
–  The total loss and total gradient have two part; model part

depends on data while regularization part doesn’t depend on
data.

–  The loss and gradient of each sample is independent.

Apache Spark Logistic Regression
–  Compute the loss and gradient in parallel in executors/

workers; reduce them to get the lossSum and
gradientSum in driver/controller.

–  Since regularization doesn’t depend on data, the loss
and gradient sum are added after distributed
computation in driver.

–  Optimization is done in single machine in driver; L1
regularization is handled by OWLQN optimizer.

Apache Spark Logistic Regression

Broadcast Weights
to Executors

Driver/Controller

Executors/Workers

Loop until converge

Initialize
Weights

Compute loss and
gradient for each
sample, and sum
them up locally

Final Model
Weights

Compute loss and
gradient for each
sample, and sum
them up locally

Compute loss and
gradient for each
sample, and sum
them up locally

Reduce from
executors to
get lossSum

and
gradientSum

Handle
regularization

and use LBFGS/
OWLQN to find

next step

Driver/Controller

Apache Spark Linear Models
–  [SPARK-5253] Linear Regression with Elastic Net (L1/L2)

[SPARK-7262] Binary Logistic Regression with Elastic Net
•  Author: DB Tsai, merged in Spark 1.4
•  Internally handle feature scaling to improve convergence and

avoid penalizing too much on those features with low variances
•  Solutions exactly match R’s glmnet but with scalability
•  For LiR, the intercept is computed using close form like R
•  For LoR, clever initial weights are used for faster convergence

–  [SPARK-5894] Feature Polynomial Mapping
•  Author: Xusen Yin, merged in Spark 1.4

Convergence: a9a dataset

Convergence: news20 dataset

Convergence: rcv1 dataset

Polynomial Mapping Experiment
–  New Spark ML Pipeline APIs allows us to construct

the experiment very easily.
–  StringIndexer for converting a string of labels into

label indices used in algorithms.
–  PolynomialExpansion for mapping the features into

high dimensional space.
–  LogisticRegression for training large scale Logistic

Regression with L1/L2 Elastic-Net regularization.

Datasets
–  a9a, ijcnn1, and webspam datasets are used in the experiment.

Comparison
Test

Accuracy
Linear SVM Linear SVM

Degree-2
Polynomial

SVM RBF
Kernel

Logistic
Regression

Logistic
Regression
Degree-2

Polynomial

a9a 84.98 85.06 85.03 85.0 85.26

ijcnn1 92.21 97.84 98.69 92.0 97.74

webspam 93.15 98.44 99.20 92.76 98.57

–  The results of Linear and Kernel SVM experiment are from
C.J. Lin, et al., Training and Testing Low-degree Polynomial Data
Mappings via Linear SVM, JMLR, 2010

Conclusion
–  For some problems, linear methods with feature

engineering are as good as nonlinear kernel methods.
–  However, the training and scoring are much faster for linear

methods.
–  For problems of document classification with sparsity, or

high dimensional classification, linear methods usually
perform well.

–  With Elastic-Net, sparse models get be trained, and the
models are easier to interpret.

Thank you!

Questions?

