Large-Scale Lasso and
Elastic-Net Regularized
Generalized Linear Models

DB Tsai NETFLIX

AAAAAAAA

Spark

summit2

Outline

— Introduction

— Linear / Nonlinear Classification
— Feature Engineering - Polynomial Expansion
— Big-data Elastic-Net Regularized Linear Models

Spoﬁ:z

summit2015

. N

Introduction

— Classification is an important and common problem
« Churn analysis, fraud detection, etc....even product
recommendations

— Many observations and variables, non-linear
relationships

— Non-linear and non-parametric models are popular
solutions, but they are slow and difficult to interpret

— Our solution
« Automated feature generation with polynomial mappings
Spoﬂ?‘ * Regularized regressions with various performance

summit2015

| ! optimizations

€« CnfN salesdemo.alpinenow.com/#work_flows/1282

7]
[]]

AdvisorNow

Logistic Regression on Spark * Run Stop Clear Save Revert Close Actions ¥

OPERATORS DATA < 00:22:55) Analytic Flow finished view status

@ N4

mnist Random Sampling Test

All Operators S

conf

D
RECENT
@ Logistic Regression
ALL OPERATORS
é Training Confusion Matrix
[] confusion Matrix @

Summary Statistics

Alpine Forest

LOGISTIC REGRESSION @ Edit Operator Copy Paste Rename Delete Step Run Explore v

Results - Status =3 s

[00:18:35] Submitting the Spark Sequoia Forest job.
[00:18:35] Spark Alpine Forest Output Path : /tmp/alpine_runtime/shillion/Logistic_Regression_on_Spark_1282/8a0eca37-9d4a-4557-9df7-529903731a49-1433996315218/

[00:18:35] Alpine Forest:check jars -- trying to upload jars to Hadoop Cluster if needed Model: i ’ 0 1 2 3 4 5 6 7 8 9
[00:18:35] Logistic Regression started running....... Accuracy: 91.63%
[00:18:35] Logistic Regression:check jars - trying to upload jars to Hadoop Cluster if needed _
[00:18:37) Alpine Forest : application_1433354350695_0316
Spark: —
[00:18:37] Logistic Regression : application_1433354350695_0317
Spark: a—
[00:19:16] Logistic Regression : treeAggregate at RDDFunctions.scala:71 -0
Spark:
[00:19:16] Alpine Forest : reduce at DistinctValueCounter.scala:49 - 0
Spark:
[00:19:25] Logistic Regression : treeAggregate at StandardScaler.scala:52 - 1
Spark:
[00:19:36] Logistic Regression : take at LogisticRegression.scala:77 - 2
Spark:
[00:19:44] Logistic Regression : count at OWLQN.scala:54 - 3
Spark:
[00:19:51] Logistic Regression : take at OWLQN.scala:58 - 4
Spark:
[00:19:52] Logistic Regression : treeAggregate at OWLQN.scala:128 - 5
Spark:
[00:19:55] Logistic Regression : treeAggregate at OWLQN.scala:128 - 6
Spark:

[00:19:57] Logistic Regression : treeAggregate at OWLQN.scala:128 - 7
Crmarle

Linear / Nonlinear Classmcatlon

Linear Nonlinear

S~ >
—_ >

— Linear : In the data’s original input space, labels can be
classified by a linear decision boundary.

Spik: . Nonlinear : The classifiers have nonlinear, and possibly

m: discontinuous decision boundaries.

Linear Classifier Examples
— Logistic Regression
— Support Vector Machine
— Naive Bayes Classifier

— Linear Discriminant Analysis

Nonlinear Classifier Examples
— Kernel Support Vector Machine

— Multi-Layer Neural Networks
— Decision Tree / Random Forest

— Gradient Boosted Decision Trees

Seaik .. — K-nearest Neighbors Algorithm

Feature Engineering
e e (X))]

® @ Decision Boundary in
a Transformed Space @ o

x,=0 e

Decision Boundary in
Original Space

Spor‘l'g 't X])CZ:O

summit2015

. N

Feature Engineering

The blue/red

dots are not

linearly separable

<7
1 L Ref: https://voutu.be/3liCbRZPrZA

Low-Degree Polynomial Mappings
— 2nd Order Example:

o(x) =[1,21,...,Tn, 2%, ..., 22, T1%2, ..., Tn_1Ln] .

— The dimension of d-degree polynomial mappings
(m+d)(n+d—1)---(n+1)
d! |

— C.J. Lin, et al., Training and Testing Low-degree
Seqik... Polynomial Data Mappings via Linear SVM, JMLR, 2010

Y N

C(n+d,d) =

2-Degree Polynomial Mapping

— 2-Degree Polynomial Mapping:
of features = O(n?) for one training sample

— 2-Degree Polynomial Kernel Method:
of features = O(nl) for one training sample

— nis the dimension of original training sample,
| is the number of training samples.

— In typical setting, / >> n.

— For sparse data, n is the average # non-zeros,

g O(n2) << O(n?); O(n?) << O(nl)

. D

Kernel Methods vs Polynomial
Mapping

Logistic Regression (linear classification model)

1
1+ eywix

p(y|x) =

Kernel Logistic Regression (non linear model)

1
p(ylx) = P
N
Soarks f(x) = ap+ Z a; K(x;.x)
$=]

summit2015

Spor‘l'g

summit2015

Cover’s Theorem

A complex pattern-classification problem, cast in a
high-dimensional space nonlinearly, is more likely
to be linearly separable than in a low-dimensional
space, provided that the space is not densely
populated.

— Cover, T.M. , Geometrical and Statistical
properties of systems of linear inequalities with
applications in pattern recognition., 1965

Logistic Regression & Overfitting

— Given a decision boundary, or a hyperplane ax, + bx, + ¢ =0

Di _ax;+bx,+cx, B

— Distance from a sample to hyperplane d= e where x,=1
—— . a
09F o o 00 w c Z
08y o oo 830%00 0=
i °202‘i@§0°;§90° Ja*+b?
e |1 g X ° W= 7
ol 1/(1+exp(-0.5)) 0O %OO ;%% v m
Ez mdﬁm o b
' . T T w2= 4
o . e 2 0 2 \/ a’+b°

iz -10 -8 6 -4 2 0 2 4 6 8 1i) »
SRMezo p(y=1]7,)= explad) _ exp("(wl Same classification result but more

I+exp(ad) 1+exp(IW) onoitive probability

Finding Hyperplane

— Maximum Likelihood Estimation: From a training dataset

X=(%,%,,%,...) Y=(y1,y2,y3,...)

— We want to find W that maximizes the likelihood of data

L(V",fl,-- *) (J’1|x1:) (J’zlxz:)--P(YN|x*N:V_‘>’)

— With linear separable dataset, likelihood can always be
Increased with the same hyperplane by multiplying a constant
into weights which resulting steeper curve in logistic function.

— This can be addressed by regularization to reduce model

Sea P4 complexity which increases the accuracy of prediction on

mmlt2015

| I unseen data.

Training Logistic Regression

— Converting the product to summation by taking the natural
logarithm of likelihood will be more convenient to work with.

— The negative log-likelinood will be our loss function
(W, %) =- ZlogP (yil %, W)

v
z OgP(J’k—lka) (I_J’k)logP(J’k=0Ifk:w)

_ exp (¥ #)

MZ I

’i’ir
[l I
I
-
:
I
V
'
+
!
' |

¥, log (1-y,)log

1 1+exp(X, W) 1+exp (X, W)

=
I

Sear

mmlt2015

B e

Vi log(l +exp(ka))

Regularization

— The loss function becomes

ltotal(w";z)=l (W’})_'_lreg(ﬁ))

model

— The loss function of regularization doesn’t depend on data.

— Common regularizations are
lreg(Vv)=7»Z w!
i=1

- L2 Regularization: -
lreg(i’v)=7»iz=]:|wi|

- L1 Regularization:

Sparks (#)=A Y (L w2+ (1) w,)

summit2015)

| - Elastic-Net Regularization: ~=""™*%

Geometric Interpretation

— The ellipses indicate the posterior distribution for no
regularization.

— The solid areas show the
constraints due to <@ <
regularization. W /

— The corners of the L1
regularization create more 11 12
Spaik’ opportunities for the solution
“™°° to have zeros for some of the weights.

F0,

Intuitive Interpretation

— L2 penalizes the square of weights resulting very strong
“force” pushing down big weights into tiny ones. For small
weights, the “force” will be very small.

— L1 penalizes their absolute value resulting smaller “force”
compared with L2 when weights are large. For smaller
weights, the “force” will be stronger than L2 which drives
small weights to zero.

d = Combining L1 and L2 penalties are called Elastic-Net
%heos method which tends to give a result in between.

.

Optimization
— We want to minimize loss function (W, X)=1 04 (W, %)+ 1,0, (W)

— First Order Minimizer - require loss, gradient vector of loss
. Gradient Descent #...=%,~¥G, ¥ is learning rate
« L-BFGS (Limited-memory BFGS)
« OWLQN (Orthant-Wise Limited-memory Quasi-Newton) for L1
« Coordinate Descent
— Second Order Minimizer - require loss, gradient, hessian matrix of loss
* Newton-Raphson, quadratic convergence which is fast!
Wy =w,—H 'G

seuc,;,r;ﬁ,fm Ref: Journal of Machine Learning Research 11 (2010) 3183-3234,

m: Chih-den Lin et al.

Issue of Second Order Minimizer

— Scale horizontally (the numbers of training data) by
leveraging on Spark to parallelize this iterative optimization
process.

— Don't scale vertically (the numbers of training features).

— Dimension of Hessian Matrix: dim(H) = n?

oot Recent applications from document classification and
Qr

summizos — computational linguistics are of this type.

Apache Spark Logistic Regression

— The total loss and total gradient have two part; model part
depends on data while regularization part doesn’t depend on

data.
ltotal(w’ x) lmodel(w x)+lreg(w)

é (W’ })totalzG(Vv’ '-x')model +é(w)reg

— The loss and gradient of each sample is independent.

N 5 5)=0! v'{) %) exp (%,)
(G(W x)model) G, (W x]; W XeT 1+exp(fkﬁ)) Y
Seaik’ L s 27
it ors (W, %) oaa=— Z yi X, w—log(1+exp(x,iw))

Apache Spark Logistic Regression

— Compute the loss and gradient in parallel in executors/
workers; reduce them to get the lossSum and
gradientSum in driver/controller.

— Since regularization doesn’t depend on data, the loss
and gradient sum are added after distributed
computation in driver.

— Optimization is done in single machine in driver; L1
seaik’ regularization is handled by OWLQN optimizer.

summit2015

. N

Apache Spark Logistic Regression

|
I
: Compute loss and
I
I

|
|
|
Initialize gradient for each :
Weights sample, and sum :
\‘ | them up locally :
: I
: Compute loss and Iz)?gctzftigotrg regEII:?iglaetion :
. g |
Broadcast Weights gradientiforeach get lossSum || and use LBFGS/ |~
to Executors I | sample, and sum _ ,
I them up Ioca”y and OWLAQN to find
| gradientSum nextstep | Final Model
. |
Driver/Controller Compute loss and : Weights
: gradient for each _ I
, | sample, and sum Driver/Controller :
: them up locally I
|
|
Soar | Executors/Workers :
SUMMIL2015 e e e e e e -

ﬁ_ Loop until converge

Apache Spark Linear Models

— [SPARK-5253] Linear Regression with Elastic Net (L1/L2)
[SPARK-7262] Binary Logistic Regression with Elastic Net

Spor‘l'g

summit2015 °

Author: DB Tsai, merged in Spark 1.4

Internally handle feature scaling to improve convergence and
avoid penalizing too much on those features with low variances
Solutions exactly match R’s gimnet but with scalability

For LiR, the intercept is computed using close form like R

For LoR, clever initial weights are used for faster convergence

— [SPARK-5894] Feature Polynomial Mapping

Author: Xusen Yin, merged in Spark 1.4

Convergence: a9a dataset

Logistic Regression with a9a Dataset (11M rows, 123 features, 11% non-zero elements)
16 executors in INTEL Xeon E3-1230v3 32GB Memory * 5 nodes Hadoop 2.0.5 alpha cluster

0.7
0.65

0.6

—&— L-BFGS Dense Features
—&— L-BFGS Sparse Features
—%— GD Sparse Features
—#&— GD Dense Features

0.55

0.5

0.45

Log-Likelihood / Number of Samples

04

0.35

Soark’

summit2015 0 5 10 15 20 25 30 35

Convergence: news20 dataset

Logistic Regression with news20 Dataset (0.14M rows, 1,355,191 features, 0.034% non-zero elements)
16 executors in INTEL Xeon E3-1230v3 32GB Memory * 5 nodes Hadoop 2.0.5 alpha cluster

1.2
1

8
Q.
3
5 08
] —#— LBFGS Sparse Vector
-E —&— GD Sparse Vector
Z 06
o
8
s
Q
3 04
o
S

0.2

Spor‘l'g 0
summit2015 0 10 20 30 40 50 60 70 80

' ﬁ Second

Convergence: rcv1 dataset

Logistic Regression with rcv1 Dataset (6.8M rows, 677,399 features, 0.15% non-zero elements)
16 executors in INTEL Xeon E3-1230v3 32GB Memory * 5 nodes Hadoop 2.0.5 alpha cluster

0.8
0.7
0.6

0.5

—#— LBFGS Sparse Vector

04 —&— GD Sparse Vector

0.3

Log-Likelihood / Number of Samples

0.2

0.1

Spaik’ o

summit2015 0 5 10 15 20 25 30

Second

Polynomial Mapping Experiment

— New Spark ML Pipeline APIs allows us to construct
the experiment very easily.

— StringIndexer for converting a string of labels into
label indices used in algorithms.

— PolynomialExpansion for mapping the features into
high dimensional space.

— LogisticRegression for training large scale Logistic

SelK.. Regression with L1/L2 Elastic-Net regularization.

.

alpha =>
reg =>

alphaParam. foreach
regParam. foreach -

J
L
J
L

stages = mutable.ArrayBuffer[PipelineStage] ()

labelIndexer = StringIndexer()
.setInputCol()
.setOutputCol()
stages += labellndexer

polynomialExpansion = / PolynomialExpansion()
.setInputCol()
.setOutputCol()
.setDegree(2)
stages += polynomialExpansion

lor = LogisticRegression()
.setFeaturesCol()
.setLabelCol()
.setRegParam(req)
.setElasticNetParam(alpha)
.setMaxIter(params.maxIter)
.setTol(params.tol)

stages += lor

pipeline = Pipeline().setStages(stages.toArray)
pipelineModel = pipeline.fit(training)

trainAcc = evaluateClassificationModel (pipelineModel, training
testAcc = evaluateClassificationModel(pipelineModel, test

println(trainAcc testAcc reg alpha")

Datasets

— a9a, ijcnn1, and webspam datasets are used in the experiment.

Data set n n [# testing
a%a 123 139 32,561 16,281
real-sim 20,958 51.5 57,848 14,461
news20 1,355,181 455.5 15,997 3,999
ijcnnl 22 13.0 49,990 91,701
MNIST38 752 168.2 11,982 1,984
covtype 54 11.9 464,810 116,202
webspam 254 85.1 280,000 70,000

.‘)’pcariZ
summit201s

. |

Logistic Regression: a9a

—— Training, alpha =

0.84 0.0
—— Testing, alpha =
0.0
0.82 —— Training, alpha =
0.5
—— Testing, alpha =
g 0.8 05
3 —— Training, alpha =
g 1.0
< .
0.78 —— Testing, alpha =
1.0
0.76

0.01 0.1 1

Spar

summit2015 regParm (lambda)

Logistic Regression with Polynomial Mapping: a9a

0.88 —— Training, alpha =
0.0
—_— 0.0
0.84 —— Training, alpha =
0.5
—— Testing, alpha =
> 0.82 0.5
g —— Training, alpha =
< 0.8 1.0
—— Testing, alpha =
1.0
0.78
0.76
0.01 0.1 1
Sear
summit2015 regParm (lambda)

. N

Logistic Regression: ijcnn1

—— Training, alpha =

0.93 0.0
—— Testing, alpha =
0.2 0.0
' —— Training, alpha =
0.5
0.92 —— Testing, alpha =
3 0.5
g —— Training, alpha =
< 0.91 1.0
—— Testing, alpha =
1.0
0.91
0.9
0 0.01 0.1 1
Sear
summit2015 regParm (lambda)

. N

Logistic Regression with Polynomial Mapping: ijcnn1

—— Training, alpha =

0.0
0.97 —— Testing, alpha =
0.0
0.96 —— Training, alpha =
0.5
0.95 —— Testing, alpha =
o) 0.5
g 0.94 —— Training, alpha =
8 1.0
3 '
0.93 —— Testing, alpha =
1.0
0.92
0.91
0.9
0 0.01 0.1 1
Sear
summit2015 regParm (lambda)

. N

Logistic Regression: webspam

—— Training, alpha =

0.0
—— Testing, alpha =
0.93 0.0
—— Training, alpha =
0.92 0-5
—— Testing, alpha =
o) 0.5
g 0.91 —— Training, alpha =
§ 1.0
—— Testing, alpha =
0.9 1.0
0.89
0.88
0 0.01 0.1 1
Sear
summit2o15 regParm (lambda)

. N

Logistic Regression with Polynomial Mapping: webspam

1 —— Training, alpha =
0.0

—— Testing, alpha =
0.0

—— Training, alpha =
0.5

—— Testing, alpha =
0.5

—— Training, alpha =
1.0

—— Testing, alpha =
1.0

0.98

0.97

Accuracy

0.95

0.94

0 0.01 0.1 1

Spar

summit2015 regParm (lambda)

. N

Spcar‘l'{Z

summit2015

Comparison

Test Linear SVM | Linear SVM SVM RBF Logistic Logistic
Accuracy Degree-2 Kernel Regression | Regression
Polynomial Degree-2
Polynomial
a%a 84.98 85.06 85.03 85.0 85.26
ijcnn1 92.21 97.84 98.69 92.0 97.74
webspam 93.15 98.44 99.20 92.76 98.57

— The results of Linear and Kernel SVM experiment are from

C.J. Lin, et al., Training and Testing Low-degree Polynomial Data

| Mappings via Linear SVM, JMLR, 2010

Conclusion

— For some problems, linear methods with feature
engineering are as good as nonlinear kernel methods.

— However, the training and scoring are much faster for linear
methods.

— For problems of document classification with sparsity, or
high dimensional classification, linear methods usually
perform well.

Spaikd With Elastic-Net, sparse models get be trained, and the

| ! models are easier to interpret.

Thank you!

Questions?

