
Netflix’s Recommendation
ML Pipeline using
Apache Spark

DB Tsai
Spark Summit East - Feb 8, 2017

At Netflix, we use ML everywhere

Everything is
a Recommendation

Over 80% of what members watch comes
from our recommendations

Recommendations are driven by Machine
Learning Algorithms

Jan 6th, 2016

#NetflixEverywhere

● 93+ Million Members

● 190+ Countries

● 125+ Million streaming hours / day

● 1000 hours of Original content in 2017

● ⅓ of US internet traffic during evenings

Constantly Innovating
through A/B tests

Try an idea offline using historical data to see
if they would have made better
recommendations

If it does, deploy a live A/B test to see if it
performs well in Production

Data Driven

Running an Experiment

Design Experiment

Collect Label Dataset

DeLorean: Offline
Feature Generation

Distributed
Model Training

Parallel training
of individual

models using
different

executors

Compute
Validation Metrics

Model Testing

 Choose
best model

Design a New Experiment to Test Out Different Ideas

Good
Metrics

Offline
Experiment

Online
A/B Test

Online
AB Testing

 Bad Metrics

Selected
Contexts

We use a standardized data format across
multiple ranking pipelines

This standardized data format is used by
common tooling, libraries, and algorithms

Contexts: The setting for evaluating a set of items (e.g.
tuples of member profiles, country, time, device, etc.)

Items: The elements to be trained on, scored, and/or
ranked (e.g. videos, rows, search entities)

Labels: For supervised learning, this will be the label
(target) for each item

Ranking problems

root
|-- profile_id: long (nullable = false)
|-- country_iso_code: string (nullable = false)
|-- items: array (nullable = true)
| |-- element: struct (containsNull = false)
| | |-- show_title_id: long (nullable = false)
| | |-- label: double (nullable = false)
| | |-- weight: double (nullable = false)
| | |-- features: struct (nullable = false)
| | | |-- feature1: double (nullable = false)
| | | |-- feature2: double (nullable = false)
| | | |-- feature3: double (nullable = false)

DeLorean Data Format a.k.a DMC-12

The nested data structure avoids an expensive
shuffle when ranking

The features are derived from Netflix data or the
output of other trained models

The features are persisted in HIVE using Parquet

Ensemble methods are used to build rankers

Transformer

https://en.wikipedia.org/wiki/Spark_(Transformers)

Transformer takes an input DataFrame and “lazily”
returns an output DataFrame

Item Transformer
● Extends Spark ML’s Transformer
● Accepts DMC-12 DataFrame with contextual

information
● Transforms DataFrame at the item level

Why DataFrame?

Catalyst Optimizations

Up-front Schema Verification

We found a 4x speedup during feature generation
by migrating from RDD-based implementation to
DataFrame implementation

Negative Generator

Facts

root
|-- profile_id: long (nullable = false)
|-- country_iso_code: string (nullable = false)
|-- items: array (nullable = true)
| |-- element: struct (containsNull = false)
| | |-- show_title_id: long (nullable = false)
| | |-- label: double (nullable = false)
| | |-- weight: double (nullable = false)

Facts with synthetic negatives

root
|-- profile_id: long (nullable = false)
|-- country_iso_code: string (nullable = false)
|-- items: array (nullable = true)
| |-- element: struct (containsNull = false)
| | |-- show_title_id: long (nullable = false)
| | |-- label: double (nullable = false)
| | |-- weight: double (nullable = false)

Creating negatives from what
member plays for supervised learning

DeLorean Feature Generator

root
|-- profile_id: long (nullable = false)
|-- country_iso_code: string (nullable = false)
|-- items: array (nullable = true)
| |-- element: struct (containsNull = false)
| | |-- show_title_id: long (nullable = false)
| | |-- label: double (nullable = false)
| | |-- weight: double (nullable = false)

root
|-- profile_id: long (nullable = false)
|-- country_iso_code: string (nullable = false)
|-- items: array (nullable = true)
| |-- element: struct (containsNull = false)
| | |-- show_title_id: long (nullable = false)
| | |-- label: double (nullable = false)
| | |-- weight: double (nullable = false)
| | |-- features: struct (nullable = false)
| | | |-- feature1: double (nullable = false)
| | | |-- feature2: double (nullable = false)
| | | |-- feature3: double (nullable = false)

Creating features based on common code base
in offline and online system

http://techblog.netflix.com/2016/02/distributed-time-travel-for-feature.html

Creating the Dataset for Algorithms

Multithreading Model Training

For single machine multi-threading algorithms, we
allocate one task to one machine. Multiple tasks
are running in Spark for different parameters

Broadcast in Spark has datasize limitation, we
write data into HDFS, and stream the data into the
trainers in executors which run single-machine
multi-threading algorithms

Distributed Model Training

We use both Spark ML’s algorithms and in-house
ML implementations

We keep the interface similar for both
multi-threading and distributed algorithms, so
experimenters can try different ideas easily

Scoring and Ranking
Scorer is also a Transformer
returned from the Trainer

Multiple models can be scored at
the same time in parallel

The ranks are derived from sorted
scores

Together with labels, we can
compute metrics, NMRR, NDCG,
and Recall, etc

root
|-- profile_id: long (nullable = false)
|-- country_iso_code: string (nullable = false)
|-- items: array (nullable = true)
| |-- element: struct (containsNull = false)
| | |-- show_title_id: long (nullable = false)
| | |-- label: double (nullable = false)
| | |-- weight: double (nullable = false)
| | |-- features: struct (nullable = false)
| | | |-- feature1: double (nullable = false)
| | | |-- feature2: double (nullable = false)
| | | |-- feature3: double (nullable = false)
| | |-- scores: struct (nullable = false)
| | | |-- model1: double false
| | | |-- model2: double false

Lessons Learned - Pipeline Abstraction

Pros

● Modularity + Tests
● Plug-N-Play
● Notebook Prototyping
● Customizability
● Schema Verification
● Serializability (AC)

Cons

● Dependent on Spark platform
● Not easy to bring to production
● Default Metric Evaluator doesn’t

support ranking multiple models
and type of metrics in one pass

