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At Netflix, we use ML everywhere



Everything is 
a Recommendation



Over 80% of what members watch comes 
from our recommendations

Recommendations are driven by Machine 
Learning Algorithms



Jan 6th, 2016



#NetflixEverywhere

● 93+ Million Members

● 190+ Countries

● 125+ Million streaming hours / day

● 1000 hours of Original content in 2017

● ⅓ of US internet traffic during evenings



Constantly Innovating 
through A/B tests



Try an idea offline using historical data to see 
if they would have made better 
recommendations

If it does, deploy a live A/B test to see if it 
performs well in Production

Data Driven



Running an Experiment

Design Experiment

Collect Label Dataset

DeLorean: Offline 
Feature Generation 

Distributed 
Model Training

Parallel training 
of individual 

models using 
different 

executors

Compute 
Validation Metrics

Model Testing

  Choose 
best model

Design a New Experiment to Test Out Different Ideas

Good
Metrics

Offline 
Experiment

Online
A/B Test

Online 
AB Testing

  Bad Metrics

Selected 
Contexts



We use a standardized data format across 
multiple ranking pipelines

This standardized data format is used by 
common tooling, libraries, and algorithms



Contexts: The setting for evaluating a set of items (e.g. 
tuples of member profiles, country, time, device, etc.)

Items: The elements to be trained on, scored, and/or 
ranked (e.g. videos, rows, search entities)

Labels: For supervised learning, this will be the label 
(target) for each item

Ranking problems



root 
|-- profile_id: long (nullable = false) 
|-- country_iso_code: string (nullable = false) 
|-- items: array (nullable = true) 
|      |-- element: struct (containsNull = false) 
|      |     |-- show_title_id: long (nullable = false) 
|      |     |-- label: double (nullable = false) 
|      |     |-- weight: double (nullable = false)
|      |     |-- features: struct (nullable = false) 
|      |     |     |-- feature1: double (nullable = false) 
|      |     |     |-- feature2: double (nullable = false) 
|      |     |     |-- feature3: double (nullable = false)

DeLorean Data Format a.k.a DMC-12



The nested data structure avoids an expensive 
shuffle when ranking

The features are derived from Netflix data or the 
output of other trained models

The features are persisted in HIVE using Parquet

Ensemble methods are used to build rankers 



Transformer

https://en.wikipedia.org/wiki/Spark_(Transformers) 



Transformer takes an input DataFrame and “lazily” 
returns an output DataFrame

Item Transformer 
● Extends Spark ML’s Transformer
● Accepts DMC-12 DataFrame with contextual 

information
● Transforms DataFrame at the item level



Why DataFrame?

Catalyst Optimizations

Up-front Schema Verification

We found a 4x speedup during feature generation 
by migrating from RDD-based implementation to 
DataFrame implementation



Negative Generator

Facts

root 
|-- profile_id: long (nullable = false) 
|-- country_iso_code: string (nullable = false) 
|-- items: array (nullable = true) 
|      |-- element: struct (containsNull = false) 
|      |     |-- show_title_id: long (nullable = false) 
|      |     |-- label: double (nullable = false) 
|      |     |-- weight: double (nullable = false)

Facts with synthetic negatives

root 
|-- profile_id: long (nullable = false) 
|-- country_iso_code: string (nullable = false) 
|-- items: array (nullable = true) 
|      |-- element: struct (containsNull = false) 
|      |     |-- show_title_id: long (nullable = false) 
|      |     |-- label: double (nullable = false) 
|      |     |-- weight: double (nullable = false)

Creating negatives from what 
member plays for supervised learning



DeLorean Feature Generator

root 
|-- profile_id: long (nullable = false) 
|-- country_iso_code: string (nullable = false) 
|-- items: array (nullable = true) 
|      |-- element: struct (containsNull = false) 
|      |     |-- show_title_id: long (nullable = false) 
|      |     |-- label: double (nullable = false) 
|      |     |-- weight: double (nullable = false)

root 
|-- profile_id: long (nullable = false) 
|-- country_iso_code: string (nullable = false) 
|-- items: array (nullable = true) 
|      |-- element: struct (containsNull = false) 
|      |     |-- show_title_id: long (nullable = false) 
|      |     |-- label: double (nullable = false) 
|      |     |-- weight: double (nullable = false)
|      |     |-- features: struct (nullable = false)
|      |     |      |-- feature1: double (nullable = false) 
|      |     |      |-- feature2: double (nullable = false) 
|      |     |      |-- feature3: double (nullable = false)

Creating features based on common code base 
in offline and online system

http://techblog.netflix.com/2016/02/distributed-time-travel-for-feature.html



Creating the Dataset for Algorithms



Multithreading Model Training

For single machine multi-threading algorithms, we 
allocate one task to one machine. Multiple tasks 
are running in Spark for different parameters

Broadcast in Spark has datasize limitation, we 
write data into HDFS, and stream the data into the 
trainers in executors which run single-machine 
multi-threading algorithms



Distributed Model Training

We use both Spark ML’s algorithms and in-house 
ML implementations

We keep the interface similar for both 
multi-threading and distributed algorithms, so 
experimenters can try different ideas easily



Scoring and Ranking
Scorer is also a Transformer 
returned from the Trainer

Multiple models can be scored at 
the same time in parallel

The ranks are derived from sorted 
scores

Together with labels, we can 
compute metrics, NMRR, NDCG, 
and Recall, etc

root 
|-- profile_id: long (nullable = false) 
|-- country_iso_code: string (nullable = false) 
|-- items: array (nullable = true) 
|      |-- element: struct (containsNull = false) 
|      |     |-- show_title_id: long (nullable = false) 
|      |     |-- label: double (nullable = false) 
|      |     |-- weight: double (nullable = false)
|      |     |-- features: struct (nullable = false)
|      |     |      |-- feature1: double (nullable = false) 
|      |     |      |-- feature2: double (nullable = false) 
|      |     |      |-- feature3: double (nullable = false)
|      |     |-- scores: struct (nullable = false)
|      |     |      |-- model1: double false
|      |     |      |-- model2: double false



Lessons Learned - Pipeline Abstraction

Pros

● Modularity + Tests
● Plug-N-Play
● Notebook Prototyping
● Customizability
● Schema Verification
● Serializability (AC)

Cons

● Dependent on Spark platform
● Not easy to bring to production
● Default Metric Evaluator doesn’t 

support ranking multiple models 
and type of metrics in one pass  




